885 resultados para Location-dependent control-flow patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study has attempted to investigate phase inversion and frictional pressure gradients during simultaneous vertical flow of oil and water two-phase through upward and downward pipes. The liquids selected were white oil (44 mPa s viscosity and 860 kg/m3 density) and water. The measurements were made for phase velocities varying from 0 to 1.24 m/s for water and from 0 to 1.87 m/s for oil, respectively. Experiments were carried either by keeping the mixture velocity constant and increasing the dispersed phase fraction or by keeping the continuous phase superficial velocity constant and increasing the dispersed phase superficial velocity. From the experimental results, it is shown that the frictional pressure gradient reaches to its lower value at the phase inversion point in this work. The points of phase inversion are always close to an input oil fraction of 0.8 for upward flow and of 0.75 for downward flow, respectively. A few models published in the literature are used to predict the phase inversion point and to compare the results with available experimental data. Suitable methods are suggested to predict the critical oil holdup at phase inversion based on the different viscosity ratio ranges. Furthermore, the frictional pressure gradient is analyzed with several suitable theoretical models according to the existing flow patterns. The analysis reveals that both the theoretical curves and the experimental data exhibit the same trend and the overall agreement of predicted values with experimental data is good, especially for a high oil fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I, an undistorted physical model on a geometric scale of 1:250 is built in this study, covering two groins and their adacent estuarine areas. By use of rinsing fix-bed model as well as localized mobile-bed model the experiment is undertaken under bi-directional steady flow. According to the experimental results, waterway dredging leads to the increase in steram velocity, the increase being larger during the ebb than during the flood. Construction of the upstream groin has some influence on the flow patterns near the downstream groin. Localized scour in front of the groin-heads is controlled mainly by ebb flow. In the case of a riverbed composed entirely of silt, the depths of localized scour in front of the two groin-heads are 27 m and 29 m, respectively. In reality, the underneath sediment of the prototype riverbed is clay whose threshold velocity is much higher than the stream velocity in the Yangtze Estuary; therefore, the depths of localized scour will not be much larger than the thickness of the silt layer, i. e. 7.4 m and 4.7 m, respectively. The designed aprons covering the riverbed in fron of the groin-heads are very effective in scour control. Aprons of slightly smaller size can also fulfill the task of protection, but the area of localized scour increases significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of two dimensional staggered unstructured discretisation schemes for the solution of fluid flow and heat transfer problems have been developed. All schemes store and solve velocity vector components at cell faces with scalar variables solved at cell centres. The velocity is resolved into face-normal and face-parallel components and the various schemes investigated differ in the treatment of the parallel component. Steady-state and time-dependent fluid flow and thermal energy equations are solved with the well known pressure correction scheme, SIMPLE, employed to couple continuity and momentum. The numerical methods developed are tested on well known benchmark cases: the Lid-Driven Cavity, Natural Convection in a Cavity and Melting of Gallium in a rectangular domain. The results obtained are shown to be comparable to benchmark, but with accuracy dependent on scheme selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrodynamic models are a powerful tool that can be used by a wide range of end users to assist in predicting the effects of both physical and biological processes on local environmental conditions. This paper describes the development of a tidal model for Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen, as well as the UK’s third Marine Nature Reserve. Using MIKE 21 modelling software, the development, calibration and performance of the modelare described in detail. Strangford Lough has a complex flow pattern with high flows through the Narrows (~3.5 m/s) linking the main body of the Lough to the Irish Sea and intricate flow patterns around the numerous islands. With the aid of good quality tidal and current data obtained throughout the Lough during the model development, the surface elevation and current magnitude between the observed and numerical model were almost identical with model skill >0.98 and >0.84 respectively. The applicability of the model is such that it can be used as an important tool for the prediction of important ecological processes as well as engineering applications within Strangford Lough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new strategy for remote reconfiguration of an antenna array far field radiation pattern is described. The scheme uses a pilot tone co-transmitted with a carrier signal from a location distant from that of a receive antenna array whose far field pattern is to be reconfigured. By mixing the co-transmitted signals locally at each antenna element in the array an IF signal is formed which defines an equivalent array spacing that can be made variable by tuning the frequency of the pilot tone with respect to the RF carrier. This makes the antenna array factor hence far field spatial characteristic reconfigurable on receive. For a 10 x 1 microstrip patch element array we show that the receive pattern can be made to vary from 35 to 10 degrees half power beam width as the difference frequency between the pilot and the carrier at 2.45 GHz varies between 10 MHz and 500 MHz carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Bicuspid aortic valve (BAV) causes complex flow patterns in the ascending aorta (AAo), which may compromise the accuracy of flow measurement by phase-contrast magnetic resonance (PC-MR). Therefore, we aimed to assess and compare the accuracy of forward flow measurement in the AAo, where complex flow is more dominant in BAV patients, with flow quantification in the left ventricular outflow tract (LVOT) and the aortic valve orifice (AV), where complex flow is less important, in BAV patients and controls. METHODS AND RESULTS: Flow was measured by PC-MR in 22 BAV patients and 20 controls at the following positions: (i) LVOT, (ii) AV, and (iii) AAo, and compared with the left ventricular stroke volume (LVSV). The correlation between the LVSV and the forward flow in the LVOT, the AV, and the AAo was good in BAV patients (r = 0.97/0.96/0.93; P < 0.01) and controls (r = 0.96/0.93/0.93; P < 0.01). However, in relation with the LVSV, the forward flow in the AAo was mildly underestimated in controls and much more in BAV patients [median (inter-quartile range): 9% (4%/15%) vs. 22% (8%/30%); P < 0.01]. This was not the case in the LVOT and the AV. The severity of flow underestimation in the AAo was associated with flow eccentricity. CONCLUSION: Flow measurement in the AAo leads to an underestimation of the forward flow in BAV patients. Measurement in the LVOT or the AV, where complex flow is less prominent, is an alternative means for quantifying the systolic forward flow in BAV patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Street-level mean flow and turbulence govern the dispersion of gases away from their sources in urban areas. A suitable reference measurement in the driving flow above the urban canopy is needed to both understand and model complex street-level flow for pollutant dispersion or emergency response purposes. In vegetation canopies, a reference at mean canopy height is often used, but it is unclear whether this is suitable for urban canopies. This paper presents an evaluation of the quality of reference measurements at both roof-top (height = H) and at height z = 9H = 190 m, and their ability to explain mean and turbulent variations of street-level flow. Fast response wind data were measured at street canyon and reference sites during the six-week long DAPPLE project field campaign in spring 2004, in central London, UK, and an averaging time of 10 min was used to distinguish recirculation-type mean flow patterns from turbulence. Flow distortion at each reference site was assessed by considering turbulence intensity and streamline deflection. Then each reference was used as the dependent variable in the model of Dobre et al. (2005) which decomposes street-level flow into channelling and recirculating components. The high reference explained more of the variability of the mean flow. Coupling of turbulent kinetic energy was also stronger between street-level and the high reference flow rather than the roof-top. This coupling was weaker when overnight flow was stratified, and turbulence was suppressed at the high reference site. However, such events were rare (<1% of data) over the six-week long period. The potential usefulness of a centralised, high reference site in London was thus demonstrated with application to emergency response and air quality modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ascertaining the location of palaeo-ice streams is crucial in order to produce accurate reconstructions of palaeo-ice sheets and examine interactions with the ocean-climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow-patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow-sets indicative of ice streaming are found feeding into the marine trough and cross-cutting relationships between these flow-sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low-gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet-ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of CO2 level in a classroom carried out in previous field work research has demonstrated that there is some evidence of variations in CO2 concentration in a classroom space. Significant fluctuations in CO2 concentration were found at different sampling points depending on the ventilation strategies and environmental conditions prevailing in individual classrooms. However, how these variations are affected by the emitting sources and the room air movement remains unknown. Hence, it was concluded that detailed investigation of the CO2 distribution need to be performed on a smaller scale. As a result, it was decided to use an environmental chamber with various methods and rates of ventilation, for the same internal temperature and heat loads, to study the effect of ventilation strategy and air movement on the distribution of CO2 concentration in a room. The role of human exhalation and its interaction with the plume induced by the body's convective flow and room air movement due to different ventilation strategies were studied in a chamber at the University of Reading. These phenomena are considered to be important in understanding and predicting the flow patterns in a space and how these impact on the distribution of contaminants. This paper attempts to study the CO2 dispersion and distribution at the exhalation zone of two people sitting in a chamber as well as throughout the occupied zone of the chamber. The horizontal and vertical distributions of CO2 were sampled at locations with a probability that CO2 variation is considered high. Although the room size, source location, ventilation rate and location of air supply and extract devices all can have influence on the CO2 distribution, this article gives general guidelines on the optimum positioning of CO2 sensor in a room.