944 resultados para Localized surface plasmon
Resumo:
We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.
Resumo:
Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.
Resumo:
Gold plasmonic lenses consisting of a planar concentric rings-groove with different periods were milled with a focused gallium ion beam on a gold thin film deposited onto an Er3+-doped tellurite glass. The plasmonic lenses were vertically illuminated with an argon ion laser highly focused by means of a 50x objective lens. The focusing mechanism of the plasmonic lenses is explained using a coherent interference model of surface plasmon-polariton (SPP) generation on the circular grating due to the incident field. As a result, phase modulation can be accomplished by the groove gap, similar to a nanoslit array with different widths. This focusing allows a high confinement of SPPs that can excite the Er3+ ions of the glass. The Er3+ luminescence spectra were measured in the far-field (500-750 nm wavelength range), where we could verify the excitation yield via the plasmonic lens on the Er3+ ions. We analyze the influence of the geometrical parameters on the luminescence spectra. The variation of these parameters results in considerable changes of the luminescence spectra.
Resumo:
There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.
Resumo:
Nature leads, we follow. But nanotechnologists are in hot pursuit, in designing controllable structures that can mimic naturally occurring and artificially synthesized materials on a common platform. The supramolecular chemistry concerns the investigation of nature principles to produce fascinating complexed and functional molecular assemblies, as well as the utilization of these principles to generate novel devices and materials, potentially useful for sensing, catalysis, transport and other applications in medical or engineering science. The work presented in this thesis is a compilation of different synthetic methods to achieve inorganic-organic hybrid nanomaterials. Silicatein, a protein enzyme, which acts both as a catalyst and template for the formation of silica needles in marine sponges, has been used for the biosynthesis of semiconductor metal oxides on surfaces. Silicatein was immobilized on gold (111) surfaces using alkane thiol, as well as on a novel self-assembly of NTA on top of a “cushion” of reactive ester polymer has been successfully employed to make functionalised surfaces. The immobilization of silicatein on surfaces was monitored by surface plasmon spectroscopy, atomic force microscopy and confocal laser scanning microscopy. Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring its hydrocatalytic activity to catalyse the synthesis of biosilica, biotitania, and biozirconia. The synthesis of semiconductor metal oxides was characterized using scanning electron microscopy. This hydrolytic biocatalyst is used to synthesize the gold nanoparticles. The gold nanoparticles are formed by reduction of tetrachloroaurate, AuCl4-, by the action of sulfhydryl groups hidden below the surface groups of the protein. The resulting gold nanoparticles which are stabilized by surface bound silicatein further aggregate to form Au nanocrystals. The shape of the nanocrystals obtained by using recombinant silicatein is controlled through chiral induction by the protein during the nucleation of the nanocrystals. As an extension of this work, TiO2 nanowires were functionalized using polymeric ligand which incorporates the nitrilotriacetic acid (NTA) linker in the back bone to immobilize His-tagged silicatein onto the TiO2 nanowires. The surface bound protein not only retains its original hydrolytic properties, but also acts as a reductant for AuCl4- in the synthesis of hybrid TiO2/silicatein/Au nanocomposites. Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution in the presence of dopamine. The surface bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The surface amine groups can be tailored further with functional molecules such as dyes. As an example, this surface functionality is used for the covalent binding of a fluorescent dye,4-chloro-7- nitrobenzylurazene (NBD) to the TiO2 nanorods. The polymeric ligands have been used successfully for the in-situ and post-functionalization of TiO2 nanoparticles. Besides to chelating dopamine anchor group the multifunctional ligand system presented here incorporates a modifier molecule which allows the binding of functional molecules (here the dyes pyrene, NBD, and Texas Red) as well as additional entities which allow tailoring the solubility of inorganic nanocrystals in different solvents. A novel method for the surface functionalization of fullerene-type MoS2 nanoparticles and subsequently binding these nanoparticles onto TiO2 nanowires has been reported using polymeric ligands. The procedure involves the complexation of IF-MoS2 with a combination of Ni2+ via an umbrella-type nitrilotriacetic acid (NTA) and anchoring them to the sidewalls of TiO2 nanowires utilizing the hydroxyl groups of dopamine present in the main contents of polymeric ligand. A convenient method for the synthesis of Au/CdS nanocomposites has been presented, which were achieved through the novel method of thiol functionalization of gold colloids. The thermodynamically most stable phase of ZrO2 (cubic) has been obtained at much lower temperature (180°C). These nanoparticles are highly blue fluorescent, with a high surface area.
Resumo:
Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).
Resumo:
The optical resonances of metallic nanoparticles placed at nanometer distances from a metal plane were investigated. At certain wavelengths, these “sphere-on-plane” systems become resonant with the incident electromagnetic field and huge enhancements of the field are predicted localized in the small gaps created between the nanoparticle and the plane. An experimental architecture to fabricate sphere-on-plane systems was successfully achieved in which in addition to the commonly used alkanethiols, polyphenylene dendrimers were used as molecular spacers to separate the metallic nanoparticles from the metal planes. They allow for a defined nanoparticle-plane separation and some often are functionalized with a chromophore core which is therefore positioned exactly in the gap. The metal planes used in the system architecture consisted of evaporated thin films of gold or silver. Evaporated gold or silver films have a smooth interface with their substrate and a rougher top surface. To investigate the influence of surface roughness on the optical response of such a film, two gold films were prepared with a smooth and a rough side which were as similar as possible. Surface plasmons were excited in Kretschmann configuration both on the rough and on the smooth side. Their reflectivity could be well modeled by a single gold film for each individual measurement. The film has to be modeled as two layers with significantly different optical constants. The smooth side, although polycrystalline, had an optical response that was very similar to a monocrystalline surface while for the rough side the standard response of evaporated gold is retrieved. For investigations on thin non-absorbing dielectric films though, this heterogeneity introduces only a negligible error. To determine the resonant wavelength of the sphere-on-plane systems a strategy was developed which is based on multi-wavelength surface plasmon spectroscopy experiments in Kretschmann-configuration. The resonant behavior of the system lead to characteristic changes in the surface plasmon dispersion. A quantitative analysis was performed by calculating the polarisability per unit area /A treating the sphere-on-plane systems as an effective layer. This approach completely avoids the ambiguity in the determination of thickness and optical response of thin films in surface plasmon spectroscopy. Equal area densities of polarisable units yielded identical response irrespective of the thickness of the layer they are distributed in. The parameter range where the evaluation of surface plasmon data in terms of /A is applicable was determined for a typical experimental situation. It was shown that this analysis yields reasonable quantitative agreement with a simple theoretical model of the sphere-on-plane resonators and reproduces the results from standard extinction experiments having a higher information content and significantly increased signal-to-noise ratio. With the objective to acquire a better quantitative understanding of the dependence of the resonance wavelength on the geometry of the sphere-on-plane systems, different systems were fabricated in which the gold nanoparticle size, type of spacer and ambient medium were varied and the resonance wavelength of the system was determined. The gold nanoparticle radius was varied in the range from 10 nm to 80 nm. It could be shown that the polyphenylene dendrimers can be used as molecular spacers to fabricate systems which support gap resonances. The resonance wavelength of the systems could be tuned in the optical region between 550 nm and 800 nm. Based on a simple analytical model, a quantitative analysis was developed to relate the systems’ geometry with the resonant wavelength and surprisingly good agreement of this simple model with the experiment without any adjustable parameters was found. The key feature ascribed to sphere-on-plane systems is a very large electromagnetic field localized in volumes in the nanometer range. Experiments towards a quantitative understanding of the field enhancements taking place in the gap of the sphere-on-plane systems were done by monitoring the increase in fluorescence of a metal-supported monolayer of a dye-loaded dendrimer upon decoration of the surface with nanoparticles. The metal used (gold and silver), the colloid mean size and the surface roughness were varied. Large silver crystallites on evaporated silver surfaces lead to the most pronounced fluorescence enhancements in the order of 104. They constitute a very promising sample architecture for the study of field enhancements.
Resumo:
Transportprozesse von anisotropen metallischen Nanopartikeln wie zum Beispiel Gold-Nanostäbchen in komplexen Flüssigkeiten und/oder begrenzten Geometrien spielen eine bedeutende Rolle in einer Vielzahl von biomedizinischen und industriellen Anwendungen. Ein Weg zu einem tiefen, grundlegenden Verständnis von Transportmechanismen ist die Verwendung zweier leistungsstarker Methoden - dynamischer Lichtstreuung (DLS) und resonanzverstärkter Lichtstreuung (REDLS) in der Nähe einer Grenzfläche. In dieser Arbeit wurden nanomolare Suspensionen von Gold-Nanostäbchen, stabilisiert mit Cetyltrimethylammoniumbromid (CTAB), mit DLS sowie in der Nähe einer Grenzfläche mit REDLS untersucht. Mit DLS wurde eine wellenlängenabhängige Verstärkung der anisotropen Streuung beobachtet, welche sich durch die Anregung von longitudinaler Oberflächenplasmonenresonanz ergibt. Die hohe Streuintensität nahe der longitudinalen Oberflächenplasmonenresonanzfrequenz für Stäbchen, welche parallel zum anregenden optischen Feld liegen, erlaubte die Auflösung der translationalen Anisotropie in einem isotropen Medium. Diese wellenlängenabhängige anisotrope Lichtstreuung ermöglicht neue Anwendungen wie etwa die Untersuchung der Dynamik einzelner Partikel in komplexen Umgebungen mittels depolarisierter dynamischer Lichtstreuung. In der Nähe einer Grenzfläche wurde eine starke Verlangsamung der translationalen Diffusion beobachtet. Hingegen zeigte sich für die Rotation zwar eine ausgeprägte aber weniger starke Verlangsamung. Um den möglichen Einfluss von Ladung auf der festen Grenzfläche zu untersuchen, wurde das Metall mit elektrisch neutralem Polymethylmethacrylat (PMMA) beschichtet. In einem weiteren Ansatz wurde das CTAB in der Gold-Nanostäbchen Lösung durch das kovalent gebundene 16-Mercaptohexadecyltrimethylammoniumbromid (MTAB) ersetzt. Daraus ergab sich eine deutlich geringere Verlangsamung.
Resumo:
Metamaterials are artificial materials that exhibit properties, such as negative index of refraction, that are not possible through natural materials. Due to many potential applications of negative index metamaterials, significant progress in the field has been observed in the last decade. However, achieving negative index at visible frequencies is a challenging task. Generally, fishnet metamaterials are considered as a possible route to achieve negative index in the visible spectrum. However, so far no metamaterial has been demonstrated to exhibit simultaneously negative permittivity and permeability (double-negative) beyond the red region of the visible spectrum. This study is mainly focused on achieving higher operating frequency for low-loss, double-negative metamaterials. Two double-negative metamaterials have been proposed to operate at highest reported frequencies. The first proposed metamaterial is based on the interaction of surface plasmon polaritons of a thin metal film with localized surface plasmons of a metallic array placed close to the thin film. It is demonstrated that the metamaterial can easily be scaled to operate at any frequency in the visible spectrum as well as possibly to the ultraviolet spectrum. Furthermore, the underlying physical phenomena and possible future extensions of the metamaterial are also investigated. The second proposed metamaterial is a modification to the so-called fishnet metamaterial. It has been demonstrated that this ‘modified fishnet’ exhibits two double-negative bands in the visible spectrum with highest operating frequency in the green region with considerably high figure of merit. In contrast to most of the fishnet metamaterials proposed in the past, behavior of this modified fishnet is independent of polarization of the incident field. In addition to the two negative index metamaterials proposed in this study, the use of metamaterial as a spacer, named as metaspacer, is also investigated. In contrast to naturally available dielectric spacers used in microfabrication, metaspacers can be realized with any (positive or negative) permittivity and permeability. As an example, the use of a negative index metaspacer in place of the dielectric layer in a fishnet metamaterial is investigated. It is shown that fishnet based on negative index metaspacer gives many improved optical properties over the conventional fishnet such as wider negative index band, higher figure of merit, higher optical transmission and stronger magnetic response. In addition to the improved properties, following interesting features were observed in the metaspacer based fishnet metamaterial. At the resonance frequency, the shape of the permeability curve was ‘inverted’ as compared to that for conventional fishnet metamaterial. Furthermore, dependence of the resonance frequency on the fishnet geometry was also reversed. Moreover, simultaneously negative group and phase velocities were observed in the low-loss region of the metaspacer based fishnet metamaterial. Due to interesting features observed using metaspacer, this study will open a new horizon for the metamaterial research.
Resumo:
Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.
Resumo:
The Bioinstrumentation Laboratory belongs to the Centre for Biomedical Technology (CTB) of the Technical University of Madrid and its main objective is to provide the scientific community with devices and techniques for the characterization of micro and nanostructures and consequently finding their best biomedical applications. Hyperthermia (greek word for “overheating”) is defined as the phenomenon that occurs when a body is exposed to an energy generating source that can produce a rise in temperature (42-45ºC) for a given time [1]. Specifically, the aim of the hyperthermia methods used in The Bioinstrumentation Laboratory is the development of thermal therapies, some of these using different kinds of nanoparticles, to kill cancer cells and reduce the damage on healthy tissues. The optical hyperthermia is based on noble metal nanoparticles and laser irradiation. This kind of nanoparticles has an immense potential associated to the development of therapies for cancer on account of their Surface Plasmon Resonance (SPR) enhanced light scattering and absorption. In a short period of time, the absorbed light is converted into localized heat, so we can take advantage of these characteristics to heat up tumor cells in order to obtain the cellular death [2]. In this case, the laboratory has an optical hyperthermia device based on a continuous wave laser used to kill glioblastoma cell lines (1321N1) in the presence of gold nanorods (Figure 1a). The wavelength of the laser light is 808 nm because the penetration of the light in the tissue is deeper in the Near Infrared Region. The first optical hyperthermia results show that the laser irradiation produces cellular death in the experimental samples of glioblastoma cell lines using gold nanorods but is not able to decrease the cellular viability of cancer cells in samples without the suitable nanorods (Figure 1b) [3]. The generation of magnetic hyperthermia is performed through changes of the magnetic induction in magnetic nanoparticles (MNPs) that are embedded in viscous medium. The Figure 2 shows a schematic design of the AC induction hyperthermia device in magnetic fluids. The equipment has been manufactured at The Bioinstrumentation Laboratory. The first block implies two steps: the signal selection with frequency manipulation option from 9 KHz to 2MHz, and a linear output up to 1500W. The second block is where magnetic field is generated ( 5mm, 10 turns). Finally, the third block is a software control where the user can establish initial parameters, and also shows the temperature response of MNPs due to the magnetic field applied [4-8]. The Bioinstrumentation Laboratory in collaboration with the Mexican company MRI-DT have recently implemented a new research line on Nuclear Magnetic Resonance Hyperthermia, which is sustained on the patent US 7,423,429B2 owned by this company. This investigation is based on the use of clinical MRI equipment not only for diagnosis but for therapy [9]. This idea consists of two main facts: Magnetic Resonance Imaging can cause focal heating [10], and the differentiation in resonant frequency between healthy and cancer cells [11]. To produce only heating in cancer cells when the whole body is irradiated, it is necessary to determine the specific resonant frequency of the target, using the information contained in the spectra of the area of interest. Then, special RF pulse sequence is applied to produce fast excitation and relaxation mechanism that generates temperature increase of the tumor, causing cellular death or metabolism malfunction that stops cellular division
Resumo:
Las nanopartículas de metales nobles (especialmente las de oro) tienen un gran potencial asociado al desarrollo de sistemas de terapia contra el cáncer debido principalmente a sus propiedades ópticas, ya que cuando son irradiadas con un haz de luz sintonizado en longitud de onda con su máximo de Resonancia de Plasmón Superficial, absorben de manera muy eficiente dicha luz y la disipan rápidamente al medio en forma de calor localizado. Esta característica por tanto, puede ser aprovechada para conseguir elevar la temperatura de células tumorales hasta sobrepasar umbrales a partir de los cuales se produciría la muerte celular. Partiendo de estos principios, esta tesis se centra en el desarrollo y la caracterización de una serie de prototipos de hipertermia óptica basados en la irradiación de nanopartículas de oro con un haz de luz adecuado, así como en la aplicación in vitro de la terapia sobre células cancerígenas. Además, el trabajo se orienta a identificar y comprender los procesos mecánicos y térmicos asociados a este tipo de hipertermia, y a desarrollar modelos que los describan, estudiando y planteando nuevas formas de irradiación, para, en última instancia, poder optimizar los procesos descritos y hacerlos más efectivos. Los resultados obtenidos indican que, el uso de nanopartículas de oro, y más concretamente de nanorods de oro, para llevar a cabo terapias de hipertermia óptica, permite desarrollar terapias muy efectivas para inducir muerte en células cancerígenas, especialmente en tumores superficiales, o como complemento quirúrgico en tumores internos. Sin embargo, los efectos de la toxicidad de las nanopartículas de oro, aún deben ser detalladamente estudiados, ya que este tipo de terapias sólo será viable si se consigue una completa biocompatibilidad. Por otro lado, el estudio exhaustivo de los procesos térmicos que tienen lugar durante la irradiación de las nanopartículas ha dado lugar a una serie de modelos que permiten determinar la efectividad fototérmica de las nanopartículas y además, visualizar la evolución de la temperatura tanto a escala nanométrica como a escala macrométrica, en función de los parámetros ópticos y térmicos del sistema. El planteamiento de nuevas formas de irradiación y el desarrollo de dispositivos orientados a estudiar los fenómenos mecánicos que tienen lugar durante la irradiación pulsada de baja frecuencia y baja potencia de nanopartículas de oro, ha dado lugar a la detección de ondas de presión asociadas a procesos de expansión termoelástica, abriendo la puerta al desarrollo de terapias de hipertermia que combinen la muerte celular producida por calentamiento con la muerte derivada de los fenómenos mecánicos descritos.VII Noble metal nanoparticles (especially gold ones), have a huge potential in the development of therapy systems against cancer mainly due to their optical properties, so that, when these particles are irradiated with a light that is syntonized in wavelength with their maximum of Surface Plasmon Resonance, they effectively absorb and dissipate the light to the surrounding medium as localized heat. We can take advantage of this characteristic for rising the temperature of cancer cells above the threshold at which cellular death would occur. From these principles, this thesis is oriented to the development and characterization of a series of optical hyperthermia prototypes based on the irradiation of gold nanoparticles using the suitable light, and on the in vitro application of this therapy over cancer cells, to understand the mechanical and thermal processes associated with this kind of hyperthermia, developing descriptive models, and to study and to approach new ways of irradiation in order to, ultimately, optimize the described processes and make them more effective. The obtained results show that, the use of gold nanoparticles, and more specifically, of gold nanorods, to carry out optical hyperthermia therapies, allows the development of very effective therapies in order to induce death in VIII cancer cells, especially in superficial tumors, or like surgical complement in more internal tumors. However, the toxicity effects of the gold nanoparticles still need to be studied more detail, because this kind of therapies will be feasible only if a complete biocompatibility is achieved. On the other hand, the exhaustive study of the thermal processes that take place during the irradiation of the nanoparticles resulted in a series of models that allow the determination of the photothermal efficiency of the nanoparticles and also the visualization of the temperature evolution, both at nanoscale and at macroscale, as a function of the optical and thermal parameters of the system. The proposal of new ways of irradiation and the development of devices oriented to study the mechanical effects that take place during the low frequency and low power pulsing irradiation of gold nanoparticles has led to the detection of pressure waves associated to thermoelastic expansion processes, opening the door to the development of hyperthermia therapies that combine the cellular death due to the heating with the death derived from the described mechanical phenomena.
Resumo:
We studied single molecular interactions between surface-attached rat CD2, a T-lymphocyte adhesion receptor, and CD48, a CD2 ligand found on antigen-presenting cells. Spherical particles were coated with decreasing densities of CD48–CD4 chimeric molecules then driven along CD2-derivatized glass surfaces under a low hydrodynamic shear rate. Particles exhibited multiple arrests of varying duration. By analyzing the dependence of arrest frequency and duration on the surface density of CD48 sites, it was concluded that (i) arrests were generated by single molecular bonds and (ii) the initial bond dissociation rate was about 7.8 s−1. The force exerted on bonds was increased from about 11 to 22 pN; the detachment rate exhibited a twofold increase. These results agree with and extend studies on the CD2–CD48 interaction by surface plasmon resonance technology, which yielded an affinity constant of ≈104 M−1 and a dissociation rate of ≥6 s−1. It is concluded that the flow chamber technology can be an useful complement to atomic force microscopy for studying interactions between isolated biomolecules, with a resolution of about 20 ms and sensitivity of a few piconewtons. Further, this technology might be extended to actual cells.
Resumo:
Kidney cortex is a main target for circulating vitamin B12 (cobalamin) in complex with transcobalamin (TC). Ligand blotting of rabbit kidney cortex with rabbit 125I-TC-B12 and human TC-57Co-B12 revealed an exclusive binding to megalin, a 600-kDa endocytic receptor present in renal proximal tubule epithelium and other absorptive epithelia. The binding was Ca2+ dependent and inhibited by receptor-associated protein (RAP). Surface plasmon resonance analysis demonstrated a high-affinity interaction between purified rabbit megalin and rabbit TC-B12 but no measurable affinity of the vitamin complex for the homologous alpha 2-macroglobulin receptor (alpha 2MR)/low density lipoprotein receptor related protein (LRP). 125I-TC-B12 was efficiently endocytosed in a RAP-inhibitable manner in megalin-expressing rat yolk sac carcinoma cells and in vivo microperfused rat proximal tubules. The radioactivity in the tubules localized to the endocytic compartments and a similar apical distribution in the proximal tubules was demonstrated after intravenous injection of 125I-TC-B12. The TC-B12 binding sites in the proximal tubule epithelium colocalized with megalin as shown by ligand binding to cryosections of rat kidney cortex, and the binding was inhibited by anti-megalin polyclonal antibody, EDTA, and RAP. These data show a novel nutritional dimension of megalin as a receptor involved in the cellular uptake of vitamin B12. The expression of megalin in absorptive epithelia in the kidney and other tissues including yolk sac and placenta suggests a role of the receptor in vitamin B12 homeostasis and fetal vitamin B12 supply.
Resumo:
We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.