977 resultados para Linear relationships
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objectives of the current study were to investigate the additive genetic associations between heifer pregnancy at 16 months of age (HP16) and age at first calving (AFC) with weight gain from birth to weaning (WG), yearling weight (YW) and mature weight (MW), in order to verify the possibility of using the traits measured directly in females as selection criteria for the genetic improvement of sexual precocity in Nelore cattle. (Co)variance components were estimated by Bayesian inference using a linear animal model for AFC, WG, YW and MW and a nonlinear (threshold) animal model for HP16. The posterior means of direct heritability estimates were: 0.45 +/- 0.02; 0.10 +/- 0.01; 023 +/- 0.02; 0.36 +/- 0.01 and 0.39 +/- 0.04, for HP16, AFC, WG, YW and MW, respectively. Maternal heritability estimate for WG was 0.07 +/- 0.01. Genetic correlations estimated between HP16 and WG, YW and MW were 0.19 +/- 0.04; 0.25 +/- 0.06 and 0.14 +/- 0.05, respectively. The genetic correlations of AFC with WG, YW and MW were low to moderate and negative, with values of -0.18 +/- 0.06; -0.22 +/- 0.05 and -0.12 +/- 0.05, respectively. The high heritability estimated for HP16 suggests that this trait seem to be a better selection criterion for females sexual precocity than AFC. Long-term selection for animals that are heavier at young ages tends to improve the heifers sexual precocity evaluated by HP16 or AFC. Predicted breeding values for HP16 can be used to select bulls and it can lead to an improvement in sexual precocity. The inclusion of HP16 in a selection index will result in small or no response for females mature weight. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Meiosis and (or) mitosis of males and females of Cryptotermes brevis, Eucryptotermes wheeleri, and Neotermes fulvescens, all of them from the neotropical region, were analyzed. Cryptotermes brevis showed a similar karyotype to that obtained by other authors for specimens of the neartic and Australian regions (2n = 36 for females and 2n = 37 for males, with XX and XYY sex mechanisms, respectively). Eucryptotermes wheeleri, the only species that has been described in this genus, showed the lowest number of chromosomes reported for Isoptera (2n = 22) until now. The male meiosis of this species presents a linear chain of six sex chromosomes, three of them being X and three of them Y chromosomes. Neotermes fulvescens showed a diploid number of 40 for males and 42 for females and, in the first male meiosis, two linear chains of chromosomes, both related to sex. One of the chains, named A, presented nine chromosomes and the other, named B, seven chromosomes. Hypotheses to explain these mechanisms are formulated in this paper and putative ancestral relationships with other species of Kalotermitidae are presented.
Resumo:
Scrotal circumference data from 47,605 Nellore young bulls, measured at around 18 mo of age (SC18), were analyzed simultaneously with 27,924 heifer pregnancy (HP) and 80,831 stayability (STAY) records to estimate their additive genetic relationships. Additionally, the possibility that economically relevant traits measured directly in females could replace SC18 as a selection criterion was verified. Heifer pregnancy was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 d. Females were exposed to sires for the first time at about 14 mo of age (between 11 and 16 mo). Stayability was defined as whether or not a cow calved every year up to 5 yr of age, when the opportunity to breed was provided. A Bayesian linear-threshold-threshold analysis via Gibbs sampler was used to estimate the variance and covariance components of the multitrait model. Heritability estimates were 0.42 +/- 0.01, 0.53 +/- 0.03, and 0.10 +/- 0.01, for SC18, HP, and STAY, respectively. The genetic correlation estimates were 0.29 +/- 0.05, 0.19 +/- 0.05, and 0.64 +/- 0.07 between SC18 and HP, SC18 and STAY, and HP and STAY, respectively. The residual correlation estimate between HP and STAY was -0.08 +/- 0.03. The heritability values indicate the existence of considerable genetic variance for SC18 and HP traits. However, genetic correlations between SC18 and the female reproductive traits analyzed in the present study can only be considered moderate. The small residual correlation between HP and STAY suggests that environmental effects common to both traits are not major. The large heritability estimate for HP and the high genetic correlation between HP and STAY obtained in the present study confirm that EPD for HP can be used to select bulls for the production of precocious, fertile, and long-lived daughters. Moreover, SC18 could be incorporated in multitrait analysis to improve the prediction accuracy for HP genetic merit of young bulls.
Resumo:
Globalization of dairy cattle breeding has created a need for international sire proofs. Some early methods for converting proofs from one population to another are based on simple linear regression. An alternative robust regression method based on the t-distribution is presented, and maximum likelihood and Bayesian techniques for analysis are described, including the situation in which some proofs are missing. Procedures were used to investigate the relationship between Holstein sire proofs obtained by two Uruguayan genetic evaluation programs. The results suggest that conversion equations developed from data including only sires having proofs in both populations can lead to distorted results, relative to estimates obtained using techniques for incomplete data. There was evidence of non-normality of regression residuals, which constitutes an additional source of bias. A robust estimator may not solve all problems, but can provide simple conversion equations that are less sensitive to outlying proofs and to departures from assumptions.
Resumo:
This study examined the relationships between gross chemical composition and ultrasonographic characteristics of the ram testes. Ten testes from sexually mature Karakul rams were scanned ex situ with an 8-MHz linear-array transducer, in a transverse and longitudinal plane. All ultrasonograms were saved as digital images and subjected to computerized analyses. Crude protein content was determined by the Kjeldahl method, moisture was determined with an oven-drying method, and fat was measured by the Soxhlet extraction of dried samples. Mean pixel values (r = -0.64, P = 0.04), pixel heterogeneity (standard deviation of pixel values; r = -0.64, P = 0.04) and maximum pixel intensity (r = -0.76, P = 0.01) were all negatively correlated with parenchymal protein content. Pixel heterogeneity correlated directly with extractable lipids (r = 0.66, P = 0.02). The quantitative correlations between echotextural and biochemical parameters found in the present experiment confirm the utility of ultrasonographic imaging combined with computer-assisted image analysis for determining changes in testicular histophysiology. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The Poincaré plot for heart rate variability analysis is a technique considered geometrical and non-linear, that can be used to assess the dynamics of heart rate variability by a representation of the values of each pair of R-R intervals into a simplified phase space that describes the system's evolution. The aim of the present study was to verify if there is some correlation between SD1, SD2 and SD1/SD2 ratio and heart rate variability nonlinear indexes either in disease or healthy conditions. 114 patients with arterial coronary disease and 65 healthy subjects underwent 30. minute heart rate registration, in supine position and the analyzed indexes were as follows: SD1, SD2, SD1/SD2, Sample Entropy, Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Detrended Fluctuation Analysis, SDNN, RMSSD, LF, HF and LF/HF ratio. Correlation coefficients between SD1, SD2 and SD1/SD2 indexes and the other variables were tested by the Spearman rank correlation test and a regression analysis. We verified high correlation between SD1/SD2 index and HE and DFA (α1) in both groups, suggesting that this ratio can be used as a surrogate variable. © 2013 Elsevier B.V.
Linear Versus Geometric Morphometric Approaches for the Analysis of Head Shape Dimorphism in Lizards
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods: Four hundred twenty-two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study and from the African Descent and Glaucoma Evaluation Study. All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results: Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R(2) = 0.314, P < 0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusions: RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma.
Resumo:
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).
Resumo:
Nuclear medicine imaging techniques such as PET are of increasing relevance in pharmaceutical research being valuable (pre)clinical tools to non-invasively assess drug performance in vivo. Therapeutic drugs, e.g. chemotherapeutics, often suffer from a poor balance between their efficacy and toxicity. Here, polymer based drug delivery systems can modulate the pharmacokinetics of low Mw therapeutics (prolonging blood circulation time, reducing toxic side effects, increasing target site accumulation) and therefore leading to a more efficient therapy. In this regard, poly-N-(2-hydroxypropyl)-methacrylamide (HPMA) constitutes a promising biocompatible polymer. Towards the further development of these structures, non-invasive PET imaging allows insight into structure-property relationships in vivo. This performant tool can guide design optimization towards more effective drug delivery. Hence, versatile radiolabeling strategies need to be developed and establishing 18F- as well as 131I-labeling of diverse HPMA architectures forms the basis for short- as well as long-term in vivo evaluations. By means of the prosthetic group [18F]FETos, 18F-labeling of distinct HPMA polymer architectures (homopolymers, amphiphilic copolymers as well as block copolymers) was successfully accomplished enabling their systematic evaluation in tumor bearing rats. These investigations revealed pronounced differences depending on individual polymer characteristics (molecular weight, amphiphilicity due to incorporated hydrophobic laurylmethacrylate (LMA) segments, architecture) as well as on the studied tumor model. Polymers showed higher uptake for up to 4 h p.i. into Walker 256 tumors vs. AT1 tumors (correlating to a higher cellular uptake in vitro). Highest tumor concentrations were found for amphiphilic HPMA-ran-LMA copolymers in comparison to homopolymers and block copolymers. Notably, the random LMA copolymer P4* (Mw=55 kDa, 25% LMA) exhibited most promising in vivo behavior such as highest blood retention as well as tumor uptake. Further studies concentrated on the influence of PEGylation (‘stealth effect’) in terms of improving drug delivery properties of defined polymeric micelles. Here, [18F]fluoroethylation of distinct PEGylated block copolymers (0%, 1%, 5%, 7%, 11% of incorporated PEG2kDa) enabled to systematically study the impact of PEG incorporation ratio and respective architecture on the in vivo performance. Most strikingly, higher PEG content caused prolonged blood circulation as well as a linear increase in tumor uptake (Walker 256 carcinoma). Due to the structural diversity of potential polymeric carrier systems, further versatile 18F-labeling strategies are needed. Therefore, a prosthetic 18F-labeling approach based on the Cu(I)-catalyzed click reaction was established for HPMA-based polymers, providing incorporation of fluorine-18 under mild conditions and in high yields. On this basis, a preliminary µPET study of a HPMA-based polymer – radiolabeled via the prosthetic group [18F]F-PEG3-N3 – was successfully accomplished. By revealing early pharmacokinetics, 18F-labeling enables to time-efficiently assess the potential of HPMA polymers for efficient drug delivery. Yet, investigating the long-term fate is essential, especially regarding prolonged circulation properties and passive tumor accumulation (EPR effect). Therefore, radiolabeling of diverse HPMA copolymers with the longer-lived isotope iodine-131 was accomplished enabling in vivo evaluation of copolymer P4* over several days. In this study, tumor retention of 131I-P4* could be demonstrated at least over 48h with concurrent blood clearance thereby confirming promising tumor targeting properties of amphiphilic HPMA copolymer systems based on the EPR effect.
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.
Resumo:
We describe synthesis, conformational studies, and binding to the five somatostatin receptors (sst 1-5) of a few analogues of the cyclic octapeptide octreotide (1), where the disulfide bridge was replaced by a dicarba group. These analogues were prepared by on-resin RCM of linear hepta-peptides containing two allylglycine residues; first- and second-generation Grubbs catalyst efficiencies were compared. The C=C bridge was hydrogenated via two different methods. Binding experiments showed that two analogues had good affinity and high selectivity for the sst5 receptor. Three-dimensional structures of the active analogues were determined by (1)H NMR spectroscopy. Conformation-affinity relationships confirmed the importance of D-Phe(2) orientation for sst2 affinity. Moreover, helical propensities well correlates with the peptide sst5 affinity. The presence of the bulky aromatic side chain of Tyr(Bzl)(10) favored the formation of a 3(10)-helix and enhanced the sst5 selectivity suppressing the sst2 affinity. Finally, a new pharmacophore model for the sst5 was developed.
Resumo:
Despite widespread use of species-area relationships (SARs), dispute remains over the most representative SAR model. Using data of small-scale SARs of Estonian dry grassland communities, we address three questions: (1) Which model describes these SARs best when known artifacts are excluded? (2) How do deviating sampling procedures (marginal instead of central position of the smaller plots in relation to the largest plot; single values instead of average values; randomly located subplots instead of nested subplots) influence the properties of the SARs? (3) Are those effects likely to bias the selection of the best model? Our general dataset consisted of 16 series of nested-plots (1 cm(2)-100 m(2), any-part system), each of which comprised five series of subplots located in the four corners and the centre of the 100-m(2) plot. Data for the three pairs of compared sampling designs were generated from this dataset by subsampling. Five function types (power, quadratic power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear regression. In some of the communities, we found extremely high species densities (including bryophytes and lichens), namely up to eight species in 1 cm(2) and up to 140 species in 100 m(2), which appear to be the highest documented values on these scales. For SARs constructed from nested-plot average-value data, the regular power function generally was the best model, closely followed by the quadratic power function, while the logarithmic and Michaelis-Menten functions performed poorly throughout. However, the relative fit of the latter two models increased significantly relative to the respective best model when the single-value or random-sampling method was applied, however, the power function normally remained far superior. These results confirm the hypothesis that both single-value and random-sampling approaches cause artifacts by increasing stochasticity in the data, which can lead to the selection of inappropriate models.
Resumo:
Climatic relationships were established in two 210Pb dated pollen sequences from small mires closely surrounded by forest just below actual forest limits (but about 300 m below potential climatic forest limits) in the northern Swiss Alps (suboceanic in climate; mainly with Picea) and the central Swiss Alps (subcontinental; mainly Pinus cembra and Larix) at annual or near-annual resolution from ad 1901 to 1996. Effects of vegetational succession were removed by splitting the time series into early and late periods and by linear detrending. Both pollen concentrations detrended by the depth-age model and modified percentages (in which counts of dominant pollen types are down-weighted) are correlated by simple linear regression with smoothed climatic parameters with one-and two-year timelags, including average monthly and April/September daylight air temperatures and with seasonal and annual precipitation sums. Results from detrended pollen concentrations suggest that peat accumulation is favoured in the northern-Alpine mire either by early snowmelt or by summer precipitation, but in the central-Alpine mire by increased precipitation and cooler summers, suggesting a position of the northern-Alpine mire near the upper altitudinal limit of peat formation, but of the central-Alpine mire near the lower limit. Results from modified pollen percentages indicate that pollen pro duction by plants growing near their upper altitudinal limit is limited by insufficient warmth in summer, and pollen production by plants growing near their lower altitudinal limit is limited by too-high temperatures. Only weakly significant pollen/climate relationships were found for Pinus cembra and Larix, probably because they experience little climatic stress growing 300 m below the potential climatic forest limit.