985 resultados para Lead compounds.
Resumo:
Analogs of the immunosuppressive cyclic undecapeptide cyclosporin A (CsA) with substitutions in positions 1, 4, 6, and/or 11 were rationally designed to possess substantially diminished or no immunosuppressive activity. When these compounds were assayed for their capacity to interfere with the replication of human immunodeficiency virus, some displayed a potent antiviral activity in newly infected cells. However, only CsA could interfere with virus replication in persistently infected cells. One CsA analog with antiviral activity costimulated the phytohemagglutinin-induced production of interleukin 2 by human lymphocytes. Human immunodeficiency virus particles from drug-exposed cells showed lower infectivity than virions from untreated cells. Thus, these nonimmunosuppressive analogs of CsA constitute a promising class of lead compounds to develop drugs for effective treatment of the acquired immunodeficiency syndrome.
Resumo:
As doenças tropicais negligenciadas (DTNs) causam um imenso sofrimento para a pessoa acometida e em muitos casos podem levar o indivíduo a morte. Elas representam um obstáculo devastador para a saúde e continuam a ser um sério impedimento para a redução da pobreza e desenvolvimento socioeconômico. Das 17 doenças desse grupo, a leishmaniose, incluindo a leishmaniose cutânea, tem grande destaque devido sua alta incidência, os gastos para o tratamento e as complicações geradas em processos de coinfecção. Ainda mais agravante, os investimentos direcionados ao controle, combate e principalmente a inovação em novos produtos é ainda muito limitado. Atualmente, a academia tem um importante papel na luta contra essas doenças através da busca de novos alvos terapêuticos e também de novas moléculas com potencial terapêutico. É nesse contexto que esse projeto teve como meta a implantação de uma plataforma para a identificação de moléculas com atividade leishmanicida. Como alvo terapêutico, optamos pela utilização da enzima diidroorotato desidrogenase de Leishmania Viannia braziliensis (LbDHODH), enzima de extrema importância na síntese de novo de nucleotídeos de pirimidina, cuja principal função é converter o diidroorotato em orotato. Esta enzima foi clonada, expressa e purificada com sucesso em nosso laboratório. Os estudos permitiram que a enzima fosse caracterizada cineticamente e estruturalmente via cristalografia de raios- X. Os primeiros ensaios inibitórios foram realizados com o orotato, produto da catálise e inibidor natural da enzima. O potencial inibitório do orotato foi mensurado através da estimativa do IC50 e a interação proteína-ligante foi caracterizada através de estudos cristalográficos. Estratégias in silico e in vitro foram utilizadas na busca de ligantes, através das quais foram identificados inibidores para a enzima LbDHODH. Ensaios de validação cruzada, utilizando a enzima homóloga humana, permitiram identificar os ligantes com maior índice de seletividade que tiveram seu potencial leishmanicida avaliado in vitro contra as formas promastigota e amastigota de Leishmania braziliensis. A realização do presente projeto permitiu a identificação de uma classe de ligantes que apresentam atividade seletiva contra LbDHODH e que será utilizada no planejamento de futuras gerações de moléculas com atividade terapêutica para o tratamento da leishmaniose. Além disso, a plataforma de ensaios otimizada permitirá a avaliação de novos grupos de moléculas como uma importante estratégia na busca por novos tratamentos contra a leishmaniose
Resumo:
The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning Glyl? molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Resumo:
Background Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cell migration, including that of CCR4+ Tregs. Significance Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.
Resumo:
Dipeptide-based sulfonium peptidylmethylketones derived from 6-diazo-5-oxo-L-norleucine (DON) have been investigated as potential water-soluble inhibitors of extracellular transglutaminase. The lead compounds were prepared in four steps and exhibited potent activity against tissue transglutaminase.
Resumo:
A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.
Resumo:
The development of classical and lipophilic inhibitors of dihydrofolate reductase (DHFR) as antitumour agents is reviewed and the advantages and problems associated with each class are discussed. The antitumour activity, pharmacokinetics and metabolism of m-azido-pyrimethamine (MZP), a novel lipophilic inhibitor, are considered and compared with metoprine, the prototype lipophilic antifolate. Evidence for a folate-independent target for lipophilic DHFR inhibitors is presented. Synthetic studies centred on three principal objectives. Firstly a series of structural analogues of MZP were prepared encompassing alkoxy, chloro and alkylamino substituents and evaluated, as the ethanesulphonate salts, for activity against mammalian DHFR. Inhibitory constant (KI) determinations were conducted by a Zone B analysis, the corresponding 4'-azido isomer of MZP proving more potent than the parent compound. Secondly, to facilitate metabolism and stability studies on MZP, a range of possible reference compounds were synthesised and characterised. Finally, a series of diaminopyrimidine derivatives were synthesised embracing structural features incompatible with DHFR inhibitory activity, in order that such compounds may serve as biochemical probes for the unidentified folate-independent target for lipophilic diaminopyrimidines discussed previously. Inactivity against DHFR was achieved via introduction of an ionic or basic group into a normally hydrophobic region of the molecule and compounds were screened against a mammalian DHFR and thymidylate synthase to confirm the abolition of activity. Several derivatives surprisingly proved potent inhibitors of DHFR exhibiting KI values comparable to that of methotrexate. Analogues were screened for antitumour activity in vitro and in vivo against murine leukaemia cell lines in order to identify potential lead compounds. Several derivatives virtually inactive against DHFR exhibited a disparate cytotoxicity and further biochemical studies are warranted. The nobreak hitherto unreported debenzylation of 2,4-diamino-5-(N-alkyl-benzylaminophenyl) pyrimidines was discovered during the course of the synthetic studies, treatment of these compounds with nitrous acid affording the corresponding benzotriazoles.
Resumo:
This thesis outlines the design and application of new routes towards a range of novel bisindolylmaleimide and indolo[2,3-a]carbazole derivatives, and evaluation of their biological effects and their chemotherapeutic potential. A key part of this work focussed on utilising a hydroxymaleimide as a replacement for the prevalent lactam/maleimide functionality and forming a series of novel derivatives through substitution on the indole nitrogens. To achieve this, a robust synthetic strategy was developed which allowed access to key maleic anhydride intermediates using Perkin-type methodology. These hydroxymaleimides were further modified via a Lossen rearrangement to furnish a series of analogues containing a 6-membered F-ring. The theme of F-ring modulation was further expanded through the utilisation of a second route involving the design and synthesis of β-keto ester intermediates, which afforded novel derivatives containing pyrazolone and isocytosine headgroups, and various N-substituents. Work on a further route involving a dione intermediate resulted in the isolation of a bisindolyl derivative with a novel imidazole F-ring. Following the synthesis of 42 novel compounds, extensive screening was undertaken using the NCI-60 cell line screen, with twelve candidates progressing to evaluation via the five dose assay. This led to the identification of several lead compounds with high cytotoxicity and excellent selectivity profiles, which included derivatives with low nanomolar GI50 values against specific cancer cell lines, and also derivatives with selective cytotoxicity. Preliminary results from a kinase screen indicated noteworthy selectivity towards GSK3α/β and PIM1 kinases, with low micromolar IC50 values being observed for these enzymes.
Resumo:
The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly's drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50=55nM) was reached. Four lead compounds (EC50 range 55-410nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F=10.3%) and plasma levels achieved on oral administration.
Resumo:
Faced with the continued emergence of antibiotic resistance to all known classes of antibiotics, a paradigm shift in approaches toward antifungal therapeutics is required. Well characterized in a broad spectrum of bacterial and fungal pathogens, biofilms are a key factor in limiting the effectiveness of conventional antibiotics. Therefore, therapeutics such as small molecules that prevent or disrupt biofilm formation would render pathogens susceptible to clearance by existing drugs. This is the first report describing the effect of the Pseudomonas aeruginosa alkylhydroxyquinolone interkingdom signal molecules 2-heptyl-3-hydroxy-4-quinolone and 2-heptyl-4-quinolone on biofilm formation in the important fungal pathogen Aspergillus fumigatus. Decoration of the anthranilate ring on the quinolone framework resulted in significant changes in the capacity of these chemical messages to suppress biofilm formation. Addition of methoxy or methyl groups at the C5–C7 positions led to retention of anti-biofilm activity, in some cases dependent on the alkyl chain length at position C2. In contrast, halogenation at either the C3 or C6 positions led to loss of activity, with one notable exception. Microscopic staining provided key insights into the structural impact of the parent and modified molecules, identifying lead compounds for further development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An accurate and sensitive species-specific GC-ICP-IDMS (gas chromatography inductively coupled plasma isotope dilution mass spectrometry) method for the determination of trimethyllead and a multi-species-specific GC-ICP-IDMS method for the simultaneous determination of trimethyllead, methylmercury, and butyltins in biological and environmental samples were developed. They allow the determination of corresponding elemental species down to the low ng g-1 range. The developed synthesis scheme for the formation of isotopically labeled Me3206Pb+ can be used for future production of this spike. The novel extraction technique, stir bar sorptive extraction (SBSE), was applied for the first time in connection with species-specific isotope dilution GC-ICP-MS for the determination of trimethyllead, methylmercury and butyltins. The results were compared with liquid-liquid extraction. The developed methods were validated by the analysis of certified reference materials. The liquid-liquid extraction GC-ICP-IDMS method was applied to seafood samples purchased from a supermarket. The methylated lead fraction in these samples, correlated to total lead, varied in a broad range of 0.01-7.6 %. On the contrary, the fraction of methylmercury is much higher, normally in the range of 80-98 %. The highest methylmercury content of up to 12 µg g-1 has been determined in shark samples, an animal which is at the end of the marine food chain, whereas in other seafood samples a MeHg+ content of less than 0.2 µg g-1 was found. Butyltin species could only be determined in samples, where anthropogenic contaminations must be assumed. This explains the observed broad variation of the butylated tin fraction in the range of <0.3-49 % in different seafood samples. Because all isotope-labelled spike compounds, except trimethyllead, are commercially available, the developed multi-species-specific GC-ICP-IDMS method has a high potential in future for routine analysis.