923 resultados para Lattice gauge theories
Resumo:
The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.
In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.
Resumo:
We study the critical properties of the monopole-percolation transition in U(1) lattice gauge theory coupled to scalars at infinite (β = 0) gauge coupling. We find strong scaling corrections in the critical exponents that must be considered by means of an infinite-volume extrapolation. After the extrapolation, our results are as precise as the obtained for the four dimensional site-percolation and, contrary to previously stated, fully compatible with them.
Resumo:
Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Resumo:
In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.
Resumo:
Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.
Resumo:
Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non‐Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two‐particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency‐dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried–Mukamel theory which use the simulated frequency‐dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried–Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency‐dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.
Resumo:
Using BRST-cohomological techniques, we analyze the consistent deformations of theories describing free tensor gauge fields whose symmetries are represented by Young tableaux made of two columns of equal length p, p > 1. Under the assumptions of locality and Poincaré invariance, we find that there is no consistent deformation of these theories that non-trivially modifies the gauge algebra and/or the gauge transformations. Adding the requirement that the deformation contains no more than two derivatives, the only possible deformation is a cosmological-constant-like term. © SISSA/ISAS 2004.
Resumo:
In this work we study the spectrum of the lowest screening masses for Yang-Mills theories on the lattice. We used the SU(2) gauge group in (3 + 1) dmensions. We adopted the multiple exponential method and the so-called ""variational"" method, in order to detect possible excited states. The calculations were done near the critical temperature of the confinement-deconfinement phase transition. We obtained values for the ratios of the screening masses consistent with predictions from universality arguments. A Monte Carlo evolution of the screening masses in the gauge theory confirms the validity of the predictions.
Resumo:
We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.
Resumo:
We present the first numerical implementation of the minimal Landau background gauge for Yang-Mills theory on the lattice. Our approach is a simple generalization of the usual minimal Landau gauge and is formulated for the general SU(N) gauge group. We also report on preliminary tests of the method in the four-dimensional SU(2) case, using different background fields. Our tests show that the convergence of the numerical minimization process is comparable to the case of a null background. The uniqueness of the minimizing functional employed is briefly discussed.
Resumo:
We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.
Resumo:
In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.