997 resultados para Laser Science
Resumo:
Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.
Resumo:
We investigate the origin of ferromagnetism induced in thin-film (similar to 20 nm) Fe-V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (similar to 10(3) s) thermal annealing. However, the laser action provides much higher diffusion coefficients (similar to 4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe. 2014 Elsevier B.V. All rights reserved.
Resumo:
In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.
Resumo:
Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.
Resumo:
In this work, Ba0.8Sr0.2TiO3 (BST)/ITO structures were grown on glass substrate and laser assisted annealing (LAA) was performed to promote the crystallization of BST. Atomic force microscopy and X-ray diffraction studies confirm the crack free and polycrystalline perovskite phase of BST. White light controlled resistive switching (RS) effect in Au/BST/ITO device is investigated. The device displays the electroforming-free bipolar RS characteristics and are explained by the modulationof the width and height of barrier at the BST/ITO interface via ferroelectric polarization. Moreover, the RS effect is signifi- cantly improved under white light illumination compared to that in the dark. The enhanced RS and photovoltaic effects are explained by considering depolarization field and charge distribution at the interface. The devices exhibit stable retention characteristics with low currents (mA), which make them attractive for non volatile memory devices.
Resumo:
Abstract. Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characteriza- tion and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is com- bined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS in- strumental error is small enough to enable detection of pre- cursory displacements of millimetric magnitude. This con- sists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Dis- placement measurement are improved considerably by ap- plying Nearest Neighbour (NN) averaging, which reduces the error (1σ ) up to a factor of 6. This technique was ap- plied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumen- tal error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by apply- ing the NN averaging method. These results show that mil- limetric displacements prior to failure can be detected using TLS.
Resumo:
Micas are commonly used in Ar-40/Ar-39 thermochronological studies of variably deformed rocks yet the physical basis by which deformation may affect radiogenic argon retention in mica is poorly constrained. This study examines the relationship between deformation and deformation-induced microstructures on radiogenic argon retention in muscovite, A combination of furnace step-heating and high-spatial resolution in situ UV-laser ablation Ar-40/Ar-39 analyses are reported for deformed muscovites sampled from a granitic pegmatite vein within the Siviez-Mischabel Nappe, western Swiss Alps (Penninic domain, Brianconnais unit). The pegmatite forms part of the Variscan (similar to 350 Ma) Alpine basement and exhibits a prominent Alpine S-C fabric including numerous mica `fish' that developed under greenschist facies metamorphic conditions, during the dominant Tertiary Alpine tectonic phase of nappe emplacement. Furnace step-heating of milligram quantities of separated muscovite grains yields an Ar-40/Ar-39 age spectrum with two distinct staircase segments but without any statistical plateau, consistent with a previous study from the same area. A single (3 X 5 mm) muscovite porphyroclast (fish) was investigated by in situ UV-laser ablation. A histogram plot of 170 individual Ar-40/Ar-39 UV-laser ablation ages exhibit a range from 115 to 387 Ma with modes at approximately 340 and 260 Ma. A variogram statistical treatment of the (40)Ad/Ar-39 results reveals ages correlated with two directions; a highly correlated direction at 310 degrees and a lesser correlation at 0 degrees relative to the sense of shearing. Using the highly correlated direction a statistically generated (Kriging method) age contour map of the Ar-40/Ar-39 data reveals a series of elongated contours subparallel to the C-surfaces which where formed during Tertiary nappe emplacement. Similar data distributions and slightly younger apparent ages are recognized in a smaller mica fish. The observed intragrain age variations are interpreted to reflect the partial loss of radiogenic argon during Alpine (similar to 35 Ma) greenschist facies metamorphism. One-dirnensional diffusion modelling results are consistent with the idea that the zones of youngest apparent age represent incipient shear band development within the mica porphyroclasts, thus providing a network of fast diffusion pathways. During Alpine greenschist facies metamorphism the incipient shear bands enhanced the intragrain loss of radiogenic argon. The structurally controlled intragrain age variations observed in this investigation imply that deformation has a direct control on the effective length scale for argon diffusion, which is consistent with the heterogeneous nature of deformation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Pearson correlation coefficients were applied for the objective comparison of 30 black gel pen inks analysed by laser desorption ionization mass spectrometry (LDI-MS). The mass spectra were obtained for ink lines directly on paper using positive and negative ion modes at several laser intensities. This methodology has the advantage of taking into account the reproducibility of the results as well as the variability between spectra of different pens. A differentiation threshold could thus be selected in order to avoid the risk of false differentiation. Combining results from positive and negative mode yielded a discriminating power up to 85%, which was better than the one obtained previously with other optical comparison methodologies. The technique also allowed discriminating between pens from the same brand.
Resumo:
A statistical methodology for the objective comparison of LDI-MS mass spectra of blue gel pen inks was evaluated. Thirty-three blue gel pen inks previously studied by RAMAN were analyzed directly on the paper using both positive and negative mode. The obtained mass spectra were first compared using relative areas of selected peaks using the Pearson correlation coefficient and the Euclidean distance. Intra-variability among results from one ink and inter-variability between results from different inks were compared in order to choose a differentiation threshold minimizing the rate of false negative (i.e. avoiding false differentiation of the inks). This yielded a discriminating power of up to 77% for analysis made in the negative mode. The whole mass spectra were then compared using the same methodology, allowing for a better DP in the negative mode of 92% using the Pearson correlation on standardized data. The positive mode results generally yielded a lower differential power (DP) than the negative mode due to a higher intra-variability compared to the inter-variability in the mass spectra of the ink samples.
Resumo:
We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.
Resumo:
The graffiti on pottery discovered on the site of Aventicum (Avenches, VD/Switzerland) form the largest corpus of minor inscriptions of the Roman Empire studied until now. Indeed, a total of 1828 graffiti have been found. The reading and the recording of the inscriptions are generally dependent on the state of conservation of the graffito and its support. In numerous cases, only a pale shadow of the inscription is visible, which makes traditional observations, such as visual observations with the naked eye, unsuitable for its decipherment. Consequently, advanced techniques have been applied for enhancing the readability of such inscriptions. In our paper we show the efficiency of 3D laser profilometry as well as high resolution photography as powerful means to decipher illegible engraved inscriptions. The use of such analyses to decipher graffiti on pottery or on other materials enables a better understanding of minor inscriptions and improves the knowledge of the daily life of ancient populations substantially.
Resumo:
Polycrystalline Ni-Mn-Ga thin films have been deposited by the pulsed laser deposition (PLD) technique, using slices of a Ni-Mn-Ga single crystal as targets and onto Si (100) substrates at temperatures ranging from 673 K up to 973 K. Off-stoichiometry thin films were deposited at a base pressure of 1×10-6-Torr or in a 5 mTorr Ar atmosphere. Samples deposited in vacuum and temperatures above 823 K are magnetic at room temperature and show the austenitic {220} reflection in their x-ray diffraction patterns. The temperature dependences of both electrical resistance and magnetic susceptibility suggest that these samples exhibit a structural martensitic transition at around 260 K. The magnetoresistance ratio at low temperature can be as high as 1.3%, suggesting the existence of a granular structure in the films
Resumo:
The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner. With the mass marketing of laser printers and the popularity of rollerball pens, the determination of line crossing sequences between such instruments is encountered by forensic document examiners. This type of crossing presents difficulties with optical microscopic line crossing techniques involving ballpoint pens or gel pens and toner (1-4). Indeed, the rollerball's aqueous ink penetrates through the toner and is absorbed by the fibers of the paper, leaving the examiner with the impression that the toner is above the ink even when it is not (5). Novotny and Westwood (3) investigated the possibility of determining aqueous ink and toner crossing sequences by microscopic observation of the intersection before and after toner removal. A major disadvantage of their study resides in destruction of the sample by scraping off the toner line to see what was underneath. The aim of this research was to investigate the ways to overcome these difficulties through digital microscopy and three-dimensional (3-D) laser profilometry. The former was used as a technique for the determination of sequences between gel pen and toner printing strokes, but provided less conclusive results than that of an optical stereomicroscope (4). 3-D laser profilometry, which allows one to observe and measure the topography of a surface, has been the subject of a number of recent studies in this area. Berx and De Kinder (6) and Schirripa Spagnolo (7,8) have tested the application of laser profilometry to determine the sequence of intersections of several lines. The results obtained in these studies overcome disadvantages of other methods applied in this area, such as scanning electron microscope or the atomic force microscope. The main advantages of 3-D laser profilometry include the ease of implementation of the technique and its nondestructive nature, which does not require sample preparation (8-10). Moreover, the technique is reproducible and presents a high degree of freedom in the vertical axes (up to 1000 μm). However, when the paper surface presents a given roughness, if the pen impressions alter the paper with a depth similar to the roughness of medium, the results are not always conclusive (8). It becomes difficult in this case to distinguish which characteristics can be imputed to the pen impressions or the quality of the paper surface. This important limitation is assessed by testing different types of paper of variable quality (of different grammage and finishing) and the writing pressure. The authors will therefore assess the limits of 3-D laser profilometry technique and determine whether the method can overcome such constraints. Second, the authors will investigate the use of digital microscopy because it presents a number of advantages: it is efficient, user-friendly, and provides an objective evaluation and interpretation.
Resumo:
Purpose: To investigate the differences between the Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: Eighty nine eyes of 46 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter / 500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter / 695nm barrier filter) before and after FFA. The quality of the FAF images was estimated, compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo- and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior quality in 18 eyes, while Topcon images were estimated superior in 21 eyes. No difference was found in 50 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found to strongly increase the likelihood of better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (71%), but showed mild autofluorescence on Topcon (88%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 52% Iso-FAF, in 43% mild Hypo-FAF, and in 5% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to exudation showed better on HRA. Pigment epithelium detachment showed identical FAF behaviour on the border, but reduced FAF with Topcon in the center. Cystic edema was visible only on HRA in a petaloid pattern. Hard exsudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blocage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract or poor fixation. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behaviour, there are differences between the two systems which need to be taken into account when interpreting the images.
Resumo:
Rather then cutting a piece of red tape with scissors, the Science students at Brock prepared a laser devise to cut through a specially made piece of metallic ribbon for the opening ceremony of the Science Complex addition. Pictured here is Robert Welch with the laser device as he attempts to 'cut' the tape. Unfortunately the device failed and Dr. Earp resorted to cutting the tape with a Swiss Army knife he had on hand.