206 resultados para LACTIS
Resumo:
Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.
Resumo:
The objective of this work was to isolate strains of lactic acid bacteria with probiotic potential from the digestive tract of marine shrimp (Litopenaeus vannamei), and to carry out in vitro selection based on multiple characters. The ideotype (ideal proposed strain) was defined by the highest averages for the traits maximum growth velocity, final count of viable cells, and inhibition halo against nine freshwater and marine pathogens, and by the lowest averages for the traits duplication time and resistance of strains to NaCl (1.5 and 3%), pH (6, 8, and 9), and biliary salts (5%). Mahalanobis distance (D²) was estimated among the evaluated strains, and the best ones were those with the shortest distances to the ideotype. Ten bacterial strains were isolated and biochemically identified as Lactobacillus plantarum (3), L. brevis (3), Weissella confusa (2), Lactococcus lactis (1), and L. delbrueckii (1). Lactobacillus plantarum strains showed a wide spectrum of action and the largest inhibition halos against pathogens, both Gram-positive and negative, high growth rate, and tolerance to all evaluated parameters. In relation to ideotype, L. plantarum showed the lowest Mahalanobis (D²) distance, followed by the strains of W. confusa, L. brevis, L. lactis, and L. delbrueckii. Among the analyzed bacterial strains, those of Lactobacillus plantarum have the greatest potential for use as a probiotic for marine shrimp.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
Immaturity of the gut barrier system in the newborn has been seen to underlie a number of chronic diseases originating in infancy and manifesting later in life. The gut microbiota and breast milk provide the most important maturing signals for the gut-related immune system and reinforcement of the gut mucosal barrier function. Recently, the composition of the gut microbiota has been proposed to be instrumental in control of host body weight and metabolism as well as the inflammatory state characterizing overweight and obesity. On this basis, inflammatory Western lifestyle diseases, including overweight development, may represent a potential target for probiotic interventions beyond the well documented clinical applications. The purpose of the present undertaking was to study the efficacy and safety of perinatal probiotic intervention. The material comprised two ongoing, prospective, double-blind NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) probiotic interventions. In the mother-infant nutrition and probiotic study altogether 256 women were randomized at their first trimester of pregnancy into a dietary intervention and a control group. The intervention group received intensive dietary counselling provided by a nutritionist, and were further randomized at baseline, double-blind, to receive probiotics (Lactobacillus rhamnosus GG and Bifidobacterium lactis) or placebo. The intervention period extended from the first trimester of pregnancy to the end of exclusive breastfeeding. In the allergy prevention study altogether 159 women were randomized, double-blind, to receive probiotics (Lactobacillus rhamnosus GG) or placebo 4 weeks before expected delivery, the intervention extending for 6 months postnatally. Additionally, patient data on all premature infants with very low birth weight (VLBW) treated in the Department of Paediatrics, Turku University Hospital, during the years 1997 - 2008 were utilized. The perinatal probiotic intervention reduced the risk of gestational diabetes mellitus (GDM) in the mothers and perinatal dietary counselling reduced that of fetal overgrowth in GDM-affected pregnancies. Early gut microbiota modulation with probiotics modified the growth pattern of the child by restraining excessive weight gain during the first years of life. The colostrum adiponectin concentration was demonstrated to be dependent on maternal diet and nutritional status during pregnancy. It was also higher in the colostrum received by normal-weight compared to overweight children at the age of 10 years. The early perinatal probiotic intervention and the postnatal probiotic intervention in VLBW infants were shown to be safe. To conclude, the findings in this study provided clinical evidence supporting the involvement of the initial microbial and nutritional environment in metabolic programming of the child. The manipulation of early gut microbial communities with probiotics might offer an applicable strategy to impact individual energy homeostasis and thus to prevent excessive body-weight gain. The results add weight to the hypothesis that interventions aiming to prevent obesity and its metabolic consequences later in life should be initiated as early as during the perinatal period.
Resumo:
The prevalence of inflammatory based diseases has increased in industrialized countries over the last decades. For allergic diseases, two primary hypotheses have been proposed to explain this phenomenon, namely the hygiene and dietary evolution based hypothesis. Particularly, the reduced early exposure to microbes and an increase in the amount of polyunsaturated fatty acids (especially n-6 PUFA) in the diet have been discussed. Often, these two factors have been studied independently, even though both factors have been shown to possess potential health benefits and their mode of action to share similar mechanisms. The hypothesis of the present study was that demonstrate that PUFA and probiotics are not separate entities as such but do interact with each other. In the present study, we investigated whether maternal diet and atopic status influence the PUFA composition of breast milk and serum fatty acids of infants, and whether the fatty acid absorption and utilization of infant formula fatty acids is affected by supplementation of infant formula with probiotic bacteria (Lactobacillus GG and Bifidobacterium lactis Bb-12). Moreover, we investigated the mechanisms by which different PUFA influence the physicochemical and functional properties of probiotics as well as functionality of epithelial cells in vitro. We demonstrated a carry-over effect of dietary fatty acids from maternal diet via breast milk into infants’ serum lipid fatty acids. Our data confirmed the previously shown allergy –related PUFA level imbalances, though it did not fully support the impaired desaturation and elongation capacity hypothesis. We also showed that PUFA incorporation into phospholipids of infants was influenced by probiotics in infant formula in a strain dependent manner. Especially,Bifidobacterium lactis Bb-12 in infant formula promoted the utilization of n-3 PUFA. Mechanistically, we demonstrated that probiotics (Lactobacillus GG, Lactobacillus casei Shirota and Lactobacillus bulgaricus) did incorporate and interconvert exogenous free PUFA in the growth medium into bacterial fatty acids strain and PUFA dependently. In general, high concentrations of free PUFA inhibited the growth and mucus adhesion of probiotics, whereas low concentrations of specific long chain PUFA were found to promote the growth and mucus adhesion of Lactobacillus casei Shirota. These effects were paralleled with only minor alterations in hydrophobicity and electron donor – electron acceptor properties of lactobacilli. Furthermore, free PUFA were also demonstrated to alter the adhesion capacity of the intestinal epithelial cells; n-6 PUFA tended to inhibit the Caco-2 adhesion of probiotics, whereas n-3 PUFA had either no or minor effects or even promote the bacterial adhesion (especially Lactobacillus casei Shirota) to PUFA treated Caco-2 cells. The results of this study demonstrate the close and bilateral interactions between dietary PUFA and probiotics. Probiotics were shown to influence the absorption and utilization of dietary PUFA, whereas PUFA were shown to alter the functional properties of both probiotics and mucosal epithelia. These findings suggest that a more thorough understanding of interactions between PUFA and intestinal microbiota is a prerequisite, when the beneficial effects of new functional foods containing probiotics are designed and planned for human intervention studies.
Resumo:
The endogenous microbiota, constituting the microbes that live inside and on humans, is estimated to outnumber human cells by a factor of ten. This commensal microbial population has an important role in many physiological functions, with the densest microbiota population found in the colon. The colonic microbiota is a highly complex and diverse bacterial ecosystem, and a delicate balance exists between the gut microbiota and its host. An imbalance in the microbial ecosystem may lead to severe symptoms in and also beyond the gastrointestinal tract. Due to the important role of the gut microbiota in human health, means of its modification have been introduced in the dietary concepts of pro-, pre- and synbiotics. Prebiotics, which are usually carbohydrates, strive to selectively influence beneficial microbes resident in the colon with the aim of modifying the composition and functionality of the commensal microbial population towards a purportedly healthier one. The study of prebiotic effects on colonic micro-organisms is typically done by using human faecal material, though this provides relatively little information on bacterial populations and metabolic events in different parts of the colon. For this reason, several in vitro models have been developed to investigate the gut microbiota. The aim of this doctoral thesis was to screen through some of the promising prebiotic candidates, characterize their effects on the microbiota through the use of two in vitro methods (pure microbial cultures and a colon simulator model) and to evaluate their potential as emerging prebiotics or synbiotics when combined with the probiotic Bifidobacterium lactis . As a result of the screening work and subsequent colon simulation studies, several compounds with promising features were identified. Xylo-oligosaccharides (XOS), which have previously already shown promise as prebiotic compounds, were well fermented by several probiotic Bifidobacterium lactis strains in pure culture studies and in the following simulation studies utilizing the complex microbiota by endogenous B. lactis Another promising compound was panose, a trisaccharide belonging to isomalto-oligosaccharides (IMO) that also was also able to modify the microbiota in vitro by increasing the number of beneficial microbes investigated. Panose has not been widely studied previously and therefore, this thesis work provided the first data on panose fermentation in mixed colonic microbiota. Galacto-oligosaccharide (GOS) is an established prebiotic, and it was studied here in conjunction with another potential polygosaccharide polydextrose (PDX) and probiotic B. lactis Bi-07. In this final study, the synbiotics including GOS were more effective than the constituting pro- or prebiotics alone in modulating the microbiota composition, thus indicating a synergy resulting from the combination. The results obtained in this in vitro work can be, and have already been, utilized in product development aimed at the nutritional modification of the human colonic microbiota. Some of the compounds have entered the human clinical intervention phase to nvestigate in more detail the prebiotic and synbiotic properties seen in these in vitro studies.
Resumo:
OBJETIVO: O objetivo deste estudo foi investigar o efeito da associação da glutamina e probióticos sobre a mucosa intestinal em ratos submetidos à peritonite experimental. MÉTODO: 16 ratos Wistar (250-350g) com peritonite experimental criada pelo método da punção dupla do ceco foram randomizados para receber diariamente no pós-operatório em conjunto com a dieta, a adição por gavagem de 0,500g de glutamina e leite reconstituído, contendo probióticos (10(6) unidades formadoras de colônias/g de Bifidobacterium lactis BL e Streptococcus thermophilus) (grupo glutamina-probióticos; n=8) ou 0,495g de caseína e leite reconstituído sem probióticos (grupo controle; n=8). O conteúdo das duas dietas foi isonitrogenado e isocalórico. Todos os animais foram sacrificados 120 horas após a peritonite experimental. A profundidade de criptas e espessura de parede da mucosa do cólon foram medidas em biopsias realizadas 2 cm acima da reflexão peritoneal. O restante da mucosa colônica foi pesado e nela mensurou-se o conteúdo de DNA. RESULTADOS: Os animais que receberam glutamina e probióticos apresentaram mucosa mais pesada (0,49±0,12 vs. 0,42±0,07g; p=0,02), maior conteúdo de DNA (0,31±0,07 vs. 0,22±0,05 mg/g de tecido; p<0,01) e criptas mais profundas (272±51 vs. 311±39µ; p=0,04) que o grupo controle. CONCLUSÃO: A associação da glutamina e probióticos confere um maior trofismo na mucosa colônica em ratos submetidos à peritonite experimental.
Resumo:
A rapid increase in allergic diseases in Western societies has led to the conclusion that our modern lifestyle is a risk factor for immune dysregulation. Potential culprits and benefactors are searched among early dietary and microbial exposures, which may act to program later allergic disease. The aim of this thesis was to investigate the role of early maternal and child nutrition in reducing the risk of child allergy. The study population comprised of 256 mother – child pairs from families with a history of allergy participating in a randomized controlled dietary counseling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) study from early pregnancy onwards. The dietary counseling aimed for a diet complying with dietary recommendations for pregnant and lactating women, with special attention to fat quality. Maternal dietary counseling was reflected in cord blood fatty acids suggesting better essential fatty acid status in infants in the counseling group. Dietary counseling with probiotics or placebo had no effect on child allergy risk, but associations between maternal diet during pregnancy and breastfeeding and child allergic outcomes were found in secondary analyses. During pregnancy, milk intake was related to decreased and cheese intake to increased risk of child atopic eczema. During breastfeeding, intake of vitamin C was related to increased risk of asthma and intake of egg was related to decreased risk of atopic eczema. The timing of introduction of complementary foods to infant’s diet was not associated with risk of atopic eczema, when adjusted with parental opinion of child allergic symptoms (i.e., potential reverse causality). In conclusion, the results demonstrate that infant fatty acid supply can be modified via maternal dietary changes. In addition, interesting associations of maternal diet with child allergy risk were discovered. However, no difference in the incidence of allergic diseases with dietary counseling was observed. This suggests that more potent dietary interventions might be necessitated to induce clinical risk reduction of allergy. Highrisk families can safely adhere to dietary recommendations for pregnant and lactating women, and the results support the current conception that no additional benefit is gained with delaying introduction of complementary feeding.
Resumo:
Este trabalho tratou da investigação do efeito do peso molecular de polietilenoglicol (PEG) sobre a partição de enzimas beta-galactosidases de diferentes origens microbianas: Escherichia coli, Klueveromyces lactis e Aspergillus orizae em sistemas de duas fases aquosas (SDFA).Foi observado que os melhores sistemas para purificação da enzima de E. coli foram os formados por PEG 4000, 6000 e 8000/fosfato, fornecendo os mais elevados fatores de purificação da enzima. As enzimas de Klueveromyces lactis e Aspergillus orizae não foram eficientemente purificadas nestes sistemas sendo insensíveis à alterações do peso molecular do PEG. Portanto, um outro sistema de duas fases aquosas foi desenvolvido contendo um ligante específico, p-aminofenil 1-tio-beta-D-galactopiranosídeo (APGP), acoplado ao PEG para purificar a enzima de Klueveromyces lactis. Uma etapa simples de partição no SDFA formado por 6% APGP-PEG4000 + 12% dextrana T505.000 foi capaz de recuperar 83% da enzima na fase superior do sistema e de aumentar 1,6 vezes o fator de purificação.
Resumo:
Nesta pesquisa procurou-se verificar as características físicas e químicas de bebidas lácteas preparadas com três concentrações de soro de queijo Minas Frescal (30, 40 e 50%), empregando-se dois tipos de culturas lácticas: uma tradicional para iogurte (YC-180) contendo cepas mistas de Streptococcus salivarus subsp. thermophilus, Lactobacillus delbrueckii subsp. lactis e Lactobacillus delbrueckii subsp. bulgaricus e outra (ABY-1) contendo cepas mistas de Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus acidophillus, Bifidobacteria e Streptococcus salivarius subsp. thermophilus. Constatou-se que as bebidas lácteas apresentaram diferença estatística no tempo zero para os teores de gordura e de extrato seco. À medida em que se elevou a proporção de soro em relação ao leite, os teores de gordura e de extrato seco diminuíram. O teor de proteína também diminuiu à medida em que se aumentou o teor de soro nas bebidas lácteas, embora a diferença não tenha sido tão acentuada quanto as observadas para os teores de gordura e de extrato seco. Em relação à lactose, não se constatou diferença entre os tratamentos. Os teores de soro não influenciaram o índice de proteólise das bebidas lácteas. Verificou-se todavia que as bebidas elaboradas com a cultura probiótica ABY-1 apresentaram valores superiores para proteólise quando comparadas às bebidas elaboradas com as culturas YC-180. As bebidas lácteas elaboradas com 30% de soro apresentaram maiores valores para viscosidade. As bebidas elaboradas com a cultura YC-180 apresentaram valores superiores para viscosidade durante o período de armazenamento.