677 resultados para Kalman, Filmagem de
Resumo:
An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.
Resumo:
Signatur des Originals: S 36/G01274
Resumo:
A discussion of nonlinear dynamics, demonstrated by the familiar automobile, is followed by the development of a systematic method of analysis of a possibly nonlinear time series using difference equations in the general state-space format. This format allows recursive state-dependent parameter estimation after each observation thereby revealing the dynamics inherent in the system in combination with random external perturbations.^ The one-step ahead prediction errors at each time period, transformed to have constant variance, and the estimated parametric sequences provide the information to (1) formally test whether time series observations y(,t) are some linear function of random errors (ELEM)(,s), for some t and s, or whether the series would more appropriately be described by a nonlinear model such as bilinear, exponential, threshold, etc., (2) formally test whether a statistically significant change has occurred in structure/level either historically or as it occurs, (3) forecast nonlinear system with a new and innovative (but very old numerical) technique utilizing rational functions to extrapolate individual parameters as smooth functions of time which are then combined to obtain the forecast of y and (4) suggest a measure of resilience, i.e. how much perturbation a structure/level can tolerate, whether internal or external to the system, and remain statistically unchanged. Although similar to one-step control, this provides a less rigid way to think about changes affecting social systems.^ Applications consisting of the analysis of some familiar and some simulated series demonstrate the procedure. Empirical results suggest that this state-space or modified augmented Kalman filter may provide interesting ways to identify particular kinds of nonlinearities as they occur in structural change via the state trajectory.^ A computational flow-chart detailing computations and software input and output is provided in the body of the text. IBM Advanced BASIC program listings to accomplish most of the analysis are provided in the appendix. ^
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
When we try to analyze and to control a system whose model was obtained only based on input/output data, accuracy is essential in the model. On the other hand, to make the procedure practical, the modeling stage must be computationally efficient. In this regard, this paper presents the application of extended Kalman filter for the parametric adaptation of a fuzzy model
Application of the Extended Kalman filter to fuzzy modeling: Algorithms and practical implementation
Resumo:
Modeling phase is fundamental both in the analysis process of a dynamic system and the design of a control system. If this phase is in-line is even more critical and the only information of the system comes from input/output data. Some adaptation algorithms for fuzzy system based on extended Kalman filter are presented in this paper, which allows obtaining accurate models without renounce the computational efficiency that characterizes the Kalman filter, and allows its implementation in-line with the process
Resumo:
Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.
Resumo:
"Sarney vai ao set de ""o dono do mar""."
Resumo:
O filtro de Kalman estendido tem sido a mais popular ferramenta de filtragem não linear das últimas quatro décadas. É de fácil implementação e apresenta baixo custo computacional. Nos casos nos quais as não linearidades do sistema dinâmico são significativas, porém, o filtro de Kalman estendido pode apresentar resultados insatisfatórios. Nessas situações, o filtro de Kalman unscented substitui com vantagens o filtro de Kalman estendido, pois pode apresentar melhores estimativas de estado, embora ambos os filtros exibam complexidade computacional de mesma ordem. A qualidade das estimativas de estado do filtro unscented está intimamente ligada à sintonia dos parâmetros que controlam a transformada unscented. A versão escalada dessa transformada exibe três parâmetros escalares que determinam o posicionamento dos pontos sigma e, consequentemente, afetam diretamente a qualidade das estimativas produzidas pelo filtro. Apesar da importância do filtro de Kalman unscented, a sintonia ótima desses parâmetros é um problema para o qual ainda não há solução definitiva. Não há nem mesmo recomendações heurísticas que garantam o bom funcionamento do filtro unscented na maior parte dos problemas tratáveis por meio de filtros Gaussianos. Essa carência e a importância desse filtro para a área de filtragem não linear fazem da busca por mecanismos de sintonia automática do filtro unscented área de pesquisa ativa. Assim, este trabalho propõe técnicas para sintonia automática dos parâmetros da transformada unscented escalada. Além da sintonia desses parâmetros, também é abordado o problema de sintonizar as matrizes de covariância dos ruídos de processo e de medida demandadas pelo modelo do sistema dinâmico usado pelo filtro unscented. As técnicas propostas cobrem então a sintonia automática de todos os parâmetros do filtro.
Resumo:
In this letter, a new approach for crop phenology estimation with remote sensing is presented. The proposed methodology is aimed to exploit tools from a dynamical system context. From a temporal sequence of images, a geometrical model is derived, which allows us to translate this temporal domain into the estimation problem. The evolution model in state space is obtained through dimensional reduction by a principal component analysis, defining the state variables, of the observations. Then, estimation is achieved by combining the generated model with actual samples in an optimal way using a Kalman filter. As a proof of concept, an example with results obtained with this approach over rice fields by exploiting stacks of TerraSAR-X dual polarization images is shown.
Resumo:
Kalman inverse filtering is used to develop a methodology for real-time estimation of forces acting at the interface between tyre and road on large off-highway mining trucks. The system model formulated is capable of estimating the three components of tyre-force at each wheel of the truck using a practical set of measurements and inputs. Good tracking is obtained by the estimated tyre-forces when compared with those simulated by an ADAMS virtual-truck model. A sensitivity analysis determines the susceptibility of the tyre-force estimates to uncertainties in the truck's parameters.