329 resultados para KURTOSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies (e.g., Hamori, 2000; Ho and Tsui, 2003; Fountas et al., 2004) find high volatility persistence of economic growth rates using generalized autoregressive conditional heteroskedasticity (GARCH) specifications. This paper reexamines the Japanese case, using the same approach and showing that this finding of high volatility persistence reflects the Great Moderation, which features a sharp decline in the variance as well as two falls in the mean of the growth rates identified by Bai and Perronâs (1998, 2003) multiple structural change test. Our empirical results provide new evidence. First, excess kurtosis drops substantially or disappears in the GARCH or exponential GARCH model that corrects for an additive outlier. Second, using the outlier-corrected data, the integrated GARCH effect or high volatility persistence remains in the specification once we introduce intercept-shift dummies into the mean equation. Third, the time-varying variance falls sharply, only when we incorporate the break in the variance equation. Fourth, the ARCH in mean model finds no effects of our more correct measure of output volatility on output growth or of output growth on its volatility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper revisits the issue of conditional volatility in real GDP growth rates for Canada, Japan, the United Kingdom, and the United States. Previous studies find high persistence in the volatility. This paper shows that this finding largely reflects a nonstationary variance. Output growth in the four countries became noticeably less volatile over the past few decades. In this paper, we employ the modified ICSS algorithm to detect structural change in the unconditional variance of output growth. One structural break exists in each of the four countries. We then use generalized autoregressive conditional heteroskedasticity (GARCH) specifications modeling output growth and its volatility with and without the break in volatility. The evidence shows that the time-varying variance falls sharply in Canada, Japan, and the U.K. and disappears in the U.S., excess kurtosis vanishes in Canada, Japan, and the U.S. and drops substantially in the U.K., once we incorporate the break in the variance equation of output for the four countries. That is, the integrated GARCH (IGARCH) effect proves spurious and the GARCH model demonstrates misspecification, if researchers neglect a nonstationary unconditional variance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a deuterium excess (d) record from an ice core drilled on a small ice cap in Svalbard in 1997. The core site is located at Lomonosovfonna at 1255 m asl, and the analyzed time series spans the period 1400-1990 A.D. The record shows pronounced multidecadal to centennial-scale variations coherent with sea surface temperature changes registered in the subtropical to southern middle-latitude North Atlantic during the instrumental period. We interpret the negative trend in the deuterium excess during the 1400s and 1500s as an indication of cooling in the North Atlantic associated with the onset of the Little Ice Age. Consistently positive anomalies of d after 1900, peaking at about 1950, correspond with well-documented contemporary warming. Yet the maximum values of deuterium excess during 1900-1990 are not as high as in the early part of the record (pre-1550). This suggests that the sea surface temperatures during this earlier period of time in the North Atlantic to the south of approximately 45°N were at least comparable with those registered in the 20th century before the end of the 1980s. We examine the potential for a cold bias to exist in the deuterium excess record due to increased evaporation from the local colder sources of moisture having isotopically cold signature. It is argued that despite a recent oceanic warming, the contribution from this local moisture to the Lomonosovfonna precipitation budget is still insufficient to interfere with the isotopic signal from the primary moisture region in the midlatitude North Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft-sediment deformation structures have been analyzed at six sites of the Kathmandu valley. Microgranulometric study (this Supplement and Fig. 3B of Mugnier et al., Tectonophysics, 2011) reveals that silty levels (60 to 80% silt) favor the development of soft-sediment deformation structures, while sandy levels (60 to 80% sand) are passively deformed. Nonetheless well sorted sand levels (more than 80% sand) generate over-fluid pressure during compaction if located beneath a silty cap, leading to fluidization and dike development. 3-D geometry of seismites indicates a very strong horizontal shearing during their development. Using a physical approach based on soil liquefaction during horizontal acceleration, we show that the fluidization zone progressively grows down-section during the shaking, but does not exactly begin at the surface. The comparison of bed-thickness and strength/depth evolution indicates three cases: i) no soft-sediment deformation occurs for thin (few centimeters) silty beds; ii) the thickness of soft-sediment deformation above sandy beds is controlled by the lithological contrast; iii) the thickness of soft-sediment deformation depends on the shaking intensity for very thick silty beds. These 3 cases are evidenced in the Kathmandu basin. We use the 30 cm-thick soft-sediment deformation level formed during the 1833 earthquake as a reference: the 1833 earthquake rupture zone extended very close to Kathmandu, inducing there MMI IX-X damages. A 90 cm-thick sediment deformation has therefore to be induced by an event greater than MMI X. From a compilation of paleo and historic seismology studies, it is found that the great (M ~ 8.1) historical earthquakes are not characteristic of the greatest earthquakes of Himalaya; hence earthquakes greater than M ~ 8.6 occurred. Kathmandu is located above one of the asperities that laterally limits the extent of mega-earthquake ruptures and two successive catastrophic events already affected Kathmandu, in 1255 located to the west of this asperity and in ~ 1100 to the east.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heavy (magnetic & non-magnetic) minerals are found concentrated by natural processes in many fluvial, estuarine, coastal and shelf environments with a potential to form economic placer deposits. Understanding the processes of heavy mineral transport and enrichment is prerequisite to interpret sediment magnetic properties in terms of hydro- and sediment dynamics. In this study, we combine rock magnetic and sedimentological laboratory measurements with numerical 3D discrete element models to investigate differential grain entrainment and transport rates of magnetic minerals in a range of coastal environments (riverbed, mouth, estuary, beach and near-shore). We analyzed grain-size distributions of representative bulk samples and their magnetic mineral fractions to relate grain-size modes to respective transport modes (traction, saltation, suspension). Rock magnetic measurements showed that distribution shapes, population sizes and grain-size offsets of bulk and magnetic mineral fractions hold information on the transport conditions and enrichment process in each depositional environment. A downstream decrease in magnetite grain size and an increase in magnetite concentration was observed from riverine source to marine sink environments. Lower flow velocities permit differential settling of light and heavy mineral grains creating heavy mineral enriched zones in estuary settings, while lighter minerals are washed out further into the sea. Numerical model results showed that higher heavy mineral concentrations in the bed increased the erosion rate and enhancing heavy mineral enrichment. In beach environments where sediments contained light and heavy mineral grains of equivalent grain sizes, the bed was found to be more stable with negligible amount of erosion compared to other bed compositions. Heavy mineral transport rates calculated for four different bed compositions showed that increasing heavy mineral content in the bed decreased the transport rate. There is always a lag in transport between light and heavy minerals which increases with higher heavy mineral concentration in all tested bed compositions. The results of laboratory experiments were validated by numerical models and showed good agreement. We demonstrate that the presented approach bears the potential to investigate heavy mineral enrichment processes in a wide range of sedimentary settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous marine tephra layers cored at Sites 792 and 793 in the Izu-Bonin forearc region offer additional information about the timing and spatial characteristics of arc volcanism and the evolution of island arcs. Explosive volcanism along the Izu-Bonin Arc, with maxima just before rifting of the arc at ~40 and 5-0 Ma, produced black and white tephras of variable grain sizes and chemical compositions. Most of the tephras belong chemically to low-K and low-alkali tholeiitic rock series with a few tephra of the high-K and alkalic rock series. Most of the tephras (low-K series) were derived from the Izu-Bonin Arc, although a few were produced far to the west of the Izu-Bonin Arc (e.g., from the Ryukyu Arc). Black tephras may have come from nearby sources, such as Aogashima, Sumisu, and Torishima islands. The high-K series of tephras, within the sediments younger than 3 Ma, may reflect thickening of the island-arc crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upper Miocene to Pleistocene sediments recovered at ODP Sites 745 and 746 in the Australian-Antarctic Basin are characterized by cyclic facies changes. Sedimentological investigations of a detailed Quaternary section reveal that facies A is dominated by a high content of siliceous microfossils, a relatively low terrigenous sediment content, an ice-rafted component, low concentrations of fine sediment particles, and a relatively high smectite content. This facies corresponds to interglacial sedimentary conditions. Facies B, in contrast, is characteristic of glacial conditions and is dominated by a large amount of terrigenous material and a smaller opaline component. There is also a prominent ice-rafted component. The microfossils commonly are reworked and broken. The clay mineral assemblages show higher proportions of glacially derived illite and chlorite. A combination of four different processes, attributed to glacial-interglacial cycles, was responsible for the cyclic facies changes during Quaternary time: transport by gravity, ice, and current and changes in primary productivity. Of great importance was the movement of the grounding line of the ice shelves, which directly influenced the intensity of ice rafting and of gravitational sediment transport to the deep sea. The extension of the ice shelves was also responsible for the generation of cold and erosive Antarctic Bottom Water, which controlled the grain-size distribution, particularly of the fine fraction, in the investigated area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eolian grain size and flux were measured on samples from 11 Arabian Sea sediment traps deployed 200-1250 km offshore. The timing of increased grain size is coincident with the onset of strong summer monsoon winds and dust storm activity over the Arabian Peninsula and Middle East. Data spanning a full annual cycle show that eolian grain size is highly correlated with barometric pressure (r=-0.91) and wind speed (r=0.84), enabling calibration of the downcore record in terms of these primary meteorological variables. Eolian flux is highly correlated with organic carbon flux (r=0.80); both increase 6-8 weeks after the grain size increase and summer monsoon onset. This lag, and the low correlation between eolian grain size and eolian flux (r=0.36), likely result from the differential sinking rates of large and small dust particles in the surface waters as well as biological scavenging associated with monsoon-induced productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain size of 139 unconsolidated sediment samples from seven DSDP sites in the Guaymas Basin and the southeastern tip of the Baja California Peninsula was determined by sieve and pipette techniques. Shepard (1954) classification and Inman (1952) parameters correlation were used for all samples. Sediment texture ranged from sand to silty clay. On the basis of grain-size parameter, the sediments can be divided into three broad groups: (1) very fine sands and coarse silts; (2) medium- to very fine silts; and (3) clays and coarse silts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sites 815 and 817 were drilled near the Townsville Trough during Leg 133 of the Ocean Drilling Program. The physical properties, compressional-wave velocity, and consolidation characteristics indicate that the periplatform carbonate sediments maintain more water content and lower compressional velocity near the Queensland Plateau than the clayey hemipelagic sediments, which have a clay content of up to 60%. Bulk density, void ratio or porosity, water content, and compressional-wave velocity are shown to have a linear relationship with burial depth. Between 3.5 and 5 Ma (about 100-500 mbsf), these physical properties maintained a constant rate vs. the depth in core because of the fast sedimentation-rate effect at Site 815. However, compressionalwave velocity still increases downward in this section. The clay content in this section causes an increase of bulk modulus and compaction effect. At Site 817, scarce terrigenous mud content and abundant carbonate content (88%-97%) cause a straight line relationship between physical properties and burial depth. During the consolidation test, we show that dominant micritic particles may cause faster acoustic velocity than sediments composed mainly of coccoliths. The bulk modulus ratio increasing rate in the clay-rich carbonate sediments is almost 4.5 times higher than in the clay-free periplatform carbonate sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present grain size, granulometric statistical parameters, and calcium carbonate content of sediment samples from the summit and east and west flanks of southern Hydrate Ridge (Sites 1244-1250). These data are compared with magnetic susceptibility measurements from the same intervals. Bulk and clay mineralogy from Sites 1244 (east flank), 1247 (west flank), and 1250 (summit) are also presented. The integration of these data allows us to characterize the main sedimentary facies and composition of the Quaternary age sediments from southern Hydrate Ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores from nine sites along a profile on the Antarctic continental margin off Kapp Norvegia were analysed sedimentologicaly. The carbonate and organic carbon content, grain size distribution, composition of the coarse fraction and clay minerals were determined. d18O- and d13C-isotope ratios were also measured. The distribution of ice rafted debris was determined by a new method. Sedimentation-rates were obtained from 230Th- and 14C-analyses. A segregation into seven different sediment facies was made possible by different sedimentological parameters, which can be attributed to different sedimentation environments and conditions. Thr profile can be divided morphologicaly into shelf, upper continental slope, slope terrace and lower continental slope. The paratill facies is deposited on the shelf during an interglacial phase and consists mainly of ice rafted sediments. A portion of the fine fraction is being carried away by the antarctic coastel current. The sedimentation rate lies between 0 and 3 cm/1000 a. The coarse grained deposits of the upper, relatively steep continental slope, were specified as a rest sediment. Current and gravity sediment transport are responsible for the intensive sorting of ice rafted material coming from the shelf. The fine sediment is carried away by currents while sand and silt are deposited as small turbidites on the slope terrace. The morainic facies only appears at the base of the upper continental slope and defines ice advances, beyond the shelf margin. The facies mainly consists of transported shelf sediments. The interglacial facies, deposited during the interglacial phases on the continental slope, are characterized by high proportions of ice raft, coarse mean grain size, low content of montmorillonite and a carbonate content, which mainly originates from planktonic foraminifera (N. pachyderma). At the central part of the slope the sedimentation rate is at its lowest (2 cm/1000 a) and increases to 3-4 cm/1000 a towards the sea, due to high production of biogenic components and towards the continent due to an increasing input of terrigenous material. Sedimentary conditions during glacial times are depicted in the glacial facies by a low content of ice rafted debris, a lower mean grain size and a high content of montmorillonite. Biogeneous components are absent. The sedimentation rate is generally about 1 cm/1000a. A transition facies is deposited during the transition from glacial to interglacial conditions. Typical for this facies, with a terrigenous composition similar to the interglacial facies, is a high content of radiolaria. The reason for the change of plankton from a siliceous to a carbonacous fauna may have been the changing hydrography caused by the sea ice. The surge facies is deposited at the continental margin under the ice shelf and is a sediment exclusively delivered by currents. With the aid of this facies it was, for the first time possible to prove the existence of Antarctic ice surges, an aspect wh ich has been discussed for the past 20 years.