967 resultados para KOH-activated carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An asymmetric aqueous capacitor was constructed by employing zeolite-templated carbon (ZTC) as a pseudocapacitive positive electrode and KOH-activated carbon as a stable negative electrode. The asymmetric capacitor can be operated with the working voltage of 1.4 V, and exhibits an energy density that is comparable to those of conventional capacitors utilizing organic electrolytes, thanks to the large pseudocapacitance of ZTC. Despite relatively thick electrode (0.2 mm) configuration, the asymmetric capacitor could be well operated under a current density of 500 mA g −1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results show that it is possible to activate a low softening point isotropic petroleum pitch, without intermediate pre-treatments, by chemical activation with KOH. The chemical activation is carried out by direct heat treatment of a mixture of the isotropic pitch and KOH. It produces activated carbons (ACs) with micropore volumes as high as 1.12 cm3/g, and BET surface areas around 3000 m2/g. The activating agent/precursor ratios studied (from 1/1 to 4/1; wt./wt.) show, as expected, that increasing the ratio enhances the adsorption characteristics of the resulting AC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete study of the importance of the pyrolysis temperature (up to 1500 °C) of a petroleum residue (ethylene tar) in the activation with KOH of the resultant pyrolysis products (covering from the own ethylene tar to pitches and well developed cokes) has been carried out. The trend in the porosity found for activated carbons is as follows: the pore volume increases with the pyrolysis temperature reaching a maximum value (1.39 cm3/g) at about 460 °C, just at the transition temperature between a fluid pitch and a solid coke. It is the pitch with highest mesophase content that develops the maximum porosity when activated with KOH. The amount of H2, CO and CO2 produced during the reaction of the mesophase pitch and coke with KOH has been quantified, and a trend as described for the pore volume was found with the pyrolysis temperature. Therefore, there is a relationship between the reactivity of the precursor with KOH and the porosity developed by the activated carbon. Since the reactions that produce H2 initiate at temperatures as low as 300 °C, it seems that KOH is modifying the conditions under which the pyrolysis occurs, and this fact is critical in the development of porosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons with high metal content have been prepared by the pyrolysis of ethylene tar with dissolved metal acetylacetonates (Ti, V, Fe, Co, Ni and Cu) and subsequent activation with KOH of the pitch obtained in pyrolysis. These metal compounds decompose during the pyrolysis of ethylene tar yielding metal nanoparticles formed by metal and/or oxide which are homogeneously distributed in the pitch and remain in the activated carbon, so that the concentration of metal is, in most cases, 4–5 times higher than in the pristine ethylene tar. Since KOH is an effective activating agent, all activated carbons combine a high porosity development with a high metal content. In some of the carbons, such as P2FeA (3.3% Fe, pore volume 1.84 cm3/g, BET surface area 3270 m2/g), there is even an increase in the pore volume when compared to the activated carbon prepared in the same way without metal, in spite of the fact that the metal increases the weight of carbon without contributing to the adsorptive capacity. It seems that iron, on the one hand modifies the pyrolysis to give a pitch with larger mesophase content and on the other hand it locally catalyzes carbon gasification with the CO2 produced along the synthesis of the carbon. In addition to its influence on activation, iron promotes the formation of graphitic carbon fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons were prepared by chemical activation of hydrochars, obtained by hydrothermal carbonisation (HTC) using low cost and abundant precursors such as rye straw and cellulose, with KOH. Hydrochars derived from rye straw were chemically activated using different KOH/precursor ratios, in order to assess the effect of this parameter on their electrochemical behaviour. In the case of cellulose, the influence of the hydrothermal carbonisation temperature was studied by fixing the activating agent/cellulose ratio. Furthermore, N-doped activated carbons were synthesised by KOH activation of hydrochars prepared by HTC from a mixture of glucose with melamine or glucosamine. In this way, N-doped activated carbons were prepared in order to evaluate the influence of nitrogen groups on their electrochemical behaviour in acidic medium. The results showed that parameters such as chemical activation or carbonisation temperature clearly affect the capacitance, since these parameters play a key role in the textural properties of activated carbons. Finally, symmetric capacitors based on activated carbon and N-doped activated carbon were tested at 1.3 V in a two-electrode cell configuration and the results revealed that N-groups improved the capacitance at high current density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influences of HCl, HNO3 and HF treatments of carbon on N2O and NO reduction with 20 wt% Cu-loaded activated carbon were studied. The order of activity in both N2O and NO is as follows: Cu20/AC-HNO3>Cu20/AC>Cu20/AC-HF>Cu20/AC-HCl. The same sequence was also observed for the amount of CO2 evolved during TPD experiments of supports acid for the catalyst dispersion. On the other hand, N2O exhibited a higher reaction rate than NO and a higher sensitivity to acid treatments, and the presence of gas-phase O-2 had opposite effects in N2O and NO reduction. The key role of carbon surface chemistry is examined to rationalize these findings and the relevant mechanistic and practical implications are discussed. The effects of oxygen surface groups on the pore structure of supports and catalysts are also analyzed, (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modeling volatile organic compounds (voc`s) adsorption onto cup-stacked carbon nanotubes (cscnt) using the linear driving force model. Volatile organic compounds (VOC`s) are an important category of air pollutants and adsorption has been employed in the treatment (or simply concentration) of these compounds. The current study used an ordinary analytical methodology to evaluate the properties of a cup-stacked nanotube (CSCNT), a stacking morphology of truncated conical graphene, with large amounts of open edges on the outer surface and empty central channels. This work used a Carbotrap bearing a cup-stacked structure (composite); for comparison, Carbotrap was used as reference (without the nanotube). The retention and saturation capacities of both adsorbents to each concentration used (1, 5, 20 and 35 ppm of toluene and phenol) were evaluated. The composite performance was greater than Carbotrap; the saturation capacities for the composite was 67% higher than Carbotrap (average values). The Langmuir isotherm model was used to fit equilibrium data for both adsorbents, and a linear driving force model (LDF) was used to quantify intraparticle adsorption kinetics. LDF was suitable to describe the curves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The characterization of three commercial activated carbons was carried out using the adsorption of various compounds in the aqueous phase. For this purpose the generalized adsorption isotherm was employed, and a modification of the Dubinin-Radushkevich pore filling model, incorporating repulsive contributions to the pore potential as well as bulk liquid phase nonideality, was used as the local isotherm. Eight different flavor compounds were used as adsorbates, and the isotherms were jointly fitted to yield a common pore size distribution for each carbon. The bulk liquid phase nonideality was incorporated through the UNIFAC activity coefficient model, and the repulsive contribution to the pore potential was incorporated through the Steele 10-4-3 potential model. The mean micropore network coordination number for each carbon was also determined from the fitted saturation capacity based on percolation theory. Good agreement between the model and the experimental data was observed. In addition, excellent agreement between the bimodal gamma pore size distribution and density functional theory-cum-regularization-based pore size distribution obtained by argon adsorption was also observed, supporting the validity of the model. The results show that liquid phase adsorption, using adsorptive molecules of different sizes, can be an effective means of characterizing the pore size distribution as well as connectivity. Alternately, if the carbon pore size distribution is independently known, the method can be used to measure critical molecular sizes. (C) 2001 Elsevier Science.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A modification of the Dubinin-Radushkevich pore filling model by incorporation of the repulsive contribution to the pore potential, and of bulk non-ideality, is proposed in this paper for characterization of activated carbon using liquid phase adsorption. For this purpose experiments have been performed using ethyl propionate, ethyl butyrate, and ethyl isovalerate as adsorbates and the microporous-mesoporous activated carbons Filtrasorb 400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The repulsive contribution to the pore potential is incorporated through a Lennard-Jones intermolecular potential model, and the bulk-liquid phase non-ideality through the UNIFAC activity coefficient model. For the characterization of activated carbons, the generalized adsorption isotherm is utilized with a bimodal gamma function as the pore size distribution function. It is found that the model can represent the experimental data very well, and significantly better than when the classical energy-size relationship is used, or when bulk non-ideality is neglected. Excellent agreement between the bimodal gamma pore size distribution and DFT-cum-regularization based pore size distribution is also observed, supporting the validity of the proposed model. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple method to characterize the micro and mesoporous carbon media is discussed. In this method, the overall adsorption quantity is the sum of capacities of all pores (slit shape is assumed), in each of which the process of adsorption occurs in two sequential steps: the multi-layering followed by pore filling steps. The critical factor in these two steps is the enhancement of the pressure of occluded 'free' molecules in the pore as well as the enhancement of the adsorption layer thickness. Both of these enhancements are due to the overlapping of the potential fields contributed by the two opposite walls. The classical BET and modified Kelvin equations are assumed to be applicable for the two steps mentioned above, with the allowance for the enhanced pore pressure, the enhanced adsorption energy and the enhanced BET constant,all of which vary with pore width. The method is then applied to data of many carbon samples of different sources to derive their respective pore size distributions, which are compared with those obtained from DFT analysis. Similar pore size distributions (PSDs) are observed although our method gives sharper distribution. Furthermore, we use our theory to analyze adsorption data of nitrogen at 77 K and that of benzene at 303 K (ambient temperature). The PSDs derived from these two different probe molecules are similar, with some small differences that could be attributed to the molecular properties, such as the collision diameter. Permeation characteristics of sub-critical fluids are also discussed in this paper. (C) 2001 Elsevier Science B.V. All rights reserved.