996 resultados para KAOLINITE
Resumo:
A process for the preparation of a modified kaolin from a kaolin group mineral which includes expansion and contraction of layers of the kaolin group mineral. The layers comprising one Si-tetrahedral sheet and one Al-octahedral sheet. The expansion and contraction may be initiated by initial intercalation of a reagent which can penetrate kaolin layers to reach an interlayer region there between to form an intercalate. Subsequently, the intercalation may be followed by de-intercalation which involves the removal of the reagent. By the above process, there is provided crystalline modified kaolins having the following properties: (i) an increased interlayer space compared to corresponding kaolin group minerals; (ii) an increased susceptibility to intercalation by cations, anions or salts compared to corresponding kaolin group minerals; and (iii) an increased exfoliated morphology compared to corresponding kaolin group minerals.
Resumo:
The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.
Resumo:
A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.
Resumo:
The particle size, morphology, crystallinity order and structural defects of four kaolinite samples are characterized by the techniques including particle size analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The particle size of four kaolinite samples gradually increases. Four samples all belong to the ordered kaolinite and show a decrease in structural order with the increase of kaolinite particle size. The changes of structural defect are proved by the increase of the band splitting in Raman spectroscopy, the decrease of the intensity of absorption bands in infrared spectroscopy, and the decrease of equivalent silicon atom and the increase of nonequivalent aluminum atom in MAS NMR spectroscopy. The differences in morphology and structural defect are attributed to the broken bonds of Al–O–Si, Al–O–Al and Si–O–Si and the Al substitution for Si in tetrahedral sheets.
Resumo:
Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.
Resumo:
Stormwater bioretention basins are subjected to spontaneous intermittent wetting and drying, unlike water treatment filter systems that are subjected to continuous feed. Drinking water filters when constructed new or after back-wash, are subjected to a phase of stabilization. Experiments show that bioretention basins are similarly impacted by intermittent wetting and drying. The common parameter monitored in the stabilisation of filters is the concentration of total solids in the outflow. Filter media in bioretention basins however, consists of a mix of particulate organic matter and fine sand. Organic carbon and solids are therefore needed to be monitored. Four Perspex bioretention filter columns of 94 mm (ID) were packed with a filter layer (800 mm), transition layer and a gravel layer and operated with synthetic stormwater in the laboratory. The filter layer contained 8% organic material by weight. A free board of 350 mm provided detention storage and head to facilitate infiltration. Synthetic stormwater was prepared by adding NH4NO3 (ammonium nitrate) and C2H5NO2 (glycine) and a mixture of kaolinite and montmorillonite clay, to tapwater. The columns were fed with synthetic stormwater with different Antecedent Dry Days (ADD) (0 – 25 day) and constant inflow concentration (2 ppm: nitrate-nitrogen, 1.5 ppm: ammonium-nitrogen, 2.5 ppm: organic-nitrogen 100 ppm: total suspended solids and 7 ppm: organic carbon) at a feed rate of 100mL.min (85.7cm/h). Samples were collected from the outflow at different time intervals between 2 – 150 min from the start of outflow and were tested for Total Suspended Solids (TSS) and Total Organic Carbon (TOC). Both TSS and TOC concentrations in the outflow were observed to be much higher than the concentration of both the parameters in the inflow during the stabilisation period indicating a phase of wash-off (first flush) which lasted for approximately 30 min for both parameters at the beginning of each storm event. The wash-off of TSS and TOC were found to be highly variable depending on the age of the filter and the number of antecedent dry days. The duration of stabilisation phase in the experiments is significant compared with many of the stormwater events. A computational analysis on total mass of each pollutant further affirmed the significance of the first flush of an event on removal of these pollutants. Therefore, the kinetics of the first flush in the stabilisation phase needs to be considered in the performance analysis of the systems.
Resumo:
The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.
Resumo:
A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.
Resumo:
The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)3(Si,Al)2O5(OH)4. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated.
Resumo:
The kaolinite (Kaol) intercalated with potassium acetate (Ac) was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry. Molecular dynamic simulation was performed to investigate the structure of Kaol–Ac intercalation complex and the hydrogen bonds between Kaol and intercalated Ac andwater using INTERFACE forcefield. The acetate anions andwater arranged in a bilayer structure in the interlayer space of Kaol. The potassium cations distributed in the interlayer space and strongly coordinated with acetate anions aswell aswater rather than keyed into the ditrigonal holes of tetrahedral surface of Kaol. Strong hydrogen bonds formed between the hydrogen atoms of hydroxyl on the octahedral surface and oxygen atoms of both acetate anions and water. The acetate anions andwater also weakly bonded hydrogen to the silica tetrahedral surface through their hydrogen atoms with the oxygen atoms of silica tetrahedral surface.
Resumo:
A series of kaolinite–methanol complexes with different basal spacings were synthesized using guest displacement reactions of the intercalation precursors kaolinite–N-methyformamide (Kaol–NMF), kaolinite–urea (Kaol–U), or kaolinite–dimethylsulfoxide (Kaol–DMSO), with methanol (Me). The interaction of methanol with kaolinite was examined using X-ray diffraction (XRD), infrared spectroscopy (IR), and nuclear magnetic resonance (NMR). Kaolinite (Kaol) initially intercalated with N-methyformamide (NMF), urea (U), or dimethylsulfoxide (DMSO) before subsequent reaction with Me formed final kaolinite–methanol (Kaol–Me) complexes characterized by basal spacing ranging between 8.6 Å and 9.6 Å, depending on the pre-intercalated reagent. Based on a comparative analysis of the three Kaol–Me displacement intercalation complexes, three types of Me intercalation products were suggested to have been present in the interlayer space of Kaol: (1) molecules grafted onto a kaolinite octahedral sheet in the form of a methoxy group (Al-O-C bond); (2) mobile Me and/or water molecules kept in the interlayer space via hydrogen bonds that could be partially removed during drying; and (3) a mixture of types 1 and 2, with the methoxy group (Al-O-C bond) grafted onto the Kaol sheet and mobile Me and/or water molecules coexisted in the system after the displacement reaction by Me. Various structural models that reflected four possible complexes of Kaol–Me were constructed for use in a complimentary computational study. Results from the calculation of the methanol kaolinite interaction indicate that the hydroxyl oxygen atom of methanol plays the dominant role in the stabilization and localization of the molecule intercalated in the interlayer space, and that water existing in the intercalated Kaol layer is inevitable.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation
Resumo:
Interaction between Paenibacillus polymyxa with minerals such as hematite, corundum, quartz and kaolinite brought about significant surface chemical changes on all the minerals. Quartz and kaolinite were rendered more hydrophobic, while hematite and corundum, became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and corundum and of proteins on quartz and kaolinite was responsible for the above surface-chemical changes. Bio-pretreatment of the above iron ore mineral mixtures resulted in the selective separation of silica and alumina from iron oxide, through bioflotation and bioflocculation. The utility of bioprocessing in the beneficiation of iron ores is demonstrated.
Resumo:
The reported presence in marine clays and the recognized role of polysaccharide as a bonding agent provided the motivation to examine the role of starch polysaccharide in the remoulded properties of nonswelling (kaolinite) and swelling (bentonite) groups of clays. The starch polysaccharide belongs to a group of naturally occurring, large-sized organic molecules (termed polymers) and is built up by extensive repetition of simple chemical units called repeat units. The results of the study indicate that the impact of the starch polysaccharide on the remoulded properties of clays is dependent on the mineralogy of the clays. On addition to bentonite clay, the immensely large number of segments (repeat units) of the starch polysaccharide create several polymer segment - clay surface bonds that cause extensive aggregation of the bentonite units layers. The aggregation of the bentonite unit layers greatly curtails the available surface area of the clay mineral for diffuse ion layer formation. The reduction in diffuse ion layer thickness markedly lowers the consistency limits and vane shear strength of the bentonite clay. On addition to kaolinite, the numerous polymer segment - clay surface bonds enhance the tendency of the kaolinite particles to flocculate. The enhanced particle flocculation is responsible apparently for a small to moderate increase in the liquid limit and remoulded undrained strength of the nonswelling clay.