976 resultados para Iterative methods (mathematics)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new iterative approach called Line Adaptation for the Singular Sources Objective (LASSO) to object or shape reconstruction based on the singular sources method (or probe method) for the reconstruction of scatterers from the far-field pattern of scattered acoustic or electromagnetic waves. The scheme is based on the construction of an indicator function given by the scattered field for incident point sources in its source point from the given far-field patterns for plane waves. The indicator function is then used to drive the contraction of a surface which surrounds the unknown scatterers. A stopping criterion for those parts of the surfaces that touch the unknown scatterers is formulated. A splitting approach for the contracting surfaces is formulated, such that scatterers consisting of several separate components can be reconstructed. Convergence of the scheme is shown, and its feasibility is demonstrated using a numerical study with several examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article we address decomposition strategies especially tailored to perform strong coupling of dimensionally heterogeneous models, under the hypothesis that one wants to solve each submodel separately and implement the interaction between subdomains by boundary conditions alone. The novel methodology takes full advantage of the small number of interface unknowns in this kind of problems. Existing algorithms can be viewed as variants of the `natural` staggered algorithm in which each domain transfers function values to the other, and receives fluxes (or forces), and vice versa. This natural algorithm is known as Dirichlet-to-Neumann in the Domain Decomposition literature. Essentially, we propose a framework in which this algorithm is equivalent to applying Gauss-Seidel iterations to a suitably defined (linear or nonlinear) system of equations. It is then immediate to switch to other iterative solvers such as GMRES or other Krylov-based method. which we assess through numerical experiments showing the significant gain that can be achieved. indeed. the benefit is that an extremely flexible, automatic coupling strategy can be developed, which in addition leads to iterative procedures that are parameter-free and rapidly converging. Further, in linear problems they have the finite termination property. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Ph.D thesis focuses on iterative regularization methods for regularizing linear and nonlinear ill-posed problems. Regarding linear problems, three new stopping rules for the Conjugate Gradient method applied to the normal equations are proposed and tested in many numerical simulations, including some tomographic images reconstruction problems. Regarding nonlinear problems, convergence and convergence rate results are provided for a Newton-type method with a modified version of Landweber iteration as an inner iteration in a Banach space setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reproduced from type-written copy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematics is highly structured and also underpins most of science and engineering. For this reason, it has proved a very suitable domain for Intelligent Tutoring System (ITS) research, with the result that probably more tutoring systems have been constructed for the domain than any other. However, the literature reveals that there still exists no consensus on a credible approach or approaches for the design of such systems, despite numerous documented efforts. Current approaches to the construction of ITSs leave much to be desired. Consequently, existing ITSs in the domain suffer from a considerable number of shortcomings which render them 'unintelligent'. The thesis examines some of the reasons why this is the case. Following a critical review of existing ITSs in the domain, and some pilot studies, an alternative approach to their construction is proposed (the 'iterative-style' approach); this supports an iterative style, and also improves on at least some of the shortcomings of existing approaches. The thesis also presents an ITS for fractions which has been developed using this approach, and which has been evaluated in various ways. It has, demonstrably, improved on many of the limitations of existing ITSs; furthermore, it has been shown to be largely 'intelligent', at least more so than current tutors for the domain. Perhaps more significantly, the tutor has also been evaluated against real students with, so far, very encouraging results. The thesis thus concludes that the novel iterative-style approach is a more credible approach to the construction of ITSs in mathematics than existing techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present topological derivative and energy based procedures for the imaging of micro and nano structures using one beam of visible light of a single wavelength. Objects with diameters as small as 10 nm can be located and their position tracked with nanometer precision. Multiple objects dis-tributed either on planes perpendicular to the incidence direction or along axial lines in the incidence direction are distinguishable. More precisely, the shape and size of plane sections perpendicular to the incidence direction can be clearly determined, even for asymmetric and nonconvex scatterers. Axial resolution improves as the size of the objects decreases. Initial reconstructions may proceed by gluing together two-dimensional horizontal slices between axial peaks or by locating objects at three-dimensional peaks of topological energies, depending on the effective wavenumber. Below a threshold size, topological derivative based iterative schemes improve initial predictions of the lo-cation, size, and shape of objects by postprocessing fixed measured data. For larger sizes, tracking the peaks of topological energy fields that average information from additional incident light beams seems to be more effective.