971 resultados para Iterative closest point algorithm
Resumo:
Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.
Resumo:
Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.
Resumo:
An adaptive antenna array combines the signal of each element, using some constraints to produce the radiation pattern of the antenna, while maximizing the performance of the system. Direction of arrival (DOA) algorithms are applied to determine the directions of impinging signals, whereas beamforming techniques are employed to determine the appropriate weights for the array elements, to create the desired pattern. In this paper, a detailed analysis of both categories of algorithms is made, when a planar antenna array is used. Several simulation results show that it is possible to point an antenna array in a desired direction based on the DOA estimation and on the beamforming algorithms. A comparison of the performance in terms of runtime and accuracy of the used algorithms is made. These characteristics are dependent on the SNR of the incoming signal.
Resumo:
A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.
Resumo:
The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.
Resumo:
Natural selection favors the survival and reproduction of organisms that are best adapted to their environment. Selection mechanism in evolutionary algorithms mimics this process, aiming to create environmental conditions in which artificial organisms could evolve solving the problem at hand. This paper proposes a new selection scheme for evolutionary multiobjective optimization. The similarity measure that defines the concept of the neighborhood is a key feature of the proposed selection. Contrary to commonly used approaches, usually defined on the basis of distances between either individuals or weight vectors, it is suggested to consider the similarity and neighborhood based on the angle between individuals in the objective space. The smaller the angle, the more similar individuals. This notion is exploited during the mating and environmental selections. The convergence is ensured by minimizing distances from individuals to a reference point, whereas the diversity is preserved by maximizing angles between neighboring individuals. Experimental results reveal a highly competitive performance and useful characteristics of the proposed selection. Its strong diversity preserving ability allows to produce a significantly better performance on some problems when compared with stat-of-the-art algorithms.
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.
Resumo:
La tomodensitométrie (CT) est une technique d'imagerie dont l'intérêt n'a cessé de croître depuis son apparition dans le début des années 70. Dans le domaine médical, son utilisation est incontournable à tel point que ce système d'imagerie pourrait être amené à devenir victime de son succès si son impact au niveau de l'exposition de la population ne fait pas l'objet d'une attention particulière. Bien évidemment, l'augmentation du nombre d'examens CT a permis d'améliorer la prise en charge des patients ou a rendu certaines procédures moins invasives. Toutefois, pour assurer que le compromis risque - bénéfice soit toujours en faveur du patient, il est nécessaire d'éviter de délivrer des doses non utiles au diagnostic.¦Si cette action est importante chez l'adulte elle doit être une priorité lorsque les examens se font chez l'enfant, en particulier lorsque l'on suit des pathologies qui nécessitent plusieurs examens CT au cours de la vie du patient. En effet, les enfants et jeunes adultes sont plus radiosensibles. De plus, leur espérance de vie étant supérieure à celle de l'adulte, ils présentent un risque accru de développer un cancer radio-induit dont la phase de latence peut être supérieure à vingt ans. Partant du principe que chaque examen radiologique est justifié, il devient dès lors nécessaire d'optimiser les protocoles d'acquisitions pour s'assurer que le patient ne soit pas irradié inutilement. L'avancée technologique au niveau du CT est très rapide et depuis 2009, de nouvelles techniques de reconstructions d'images, dites itératives, ont été introduites afin de réduire la dose et améliorer la qualité d'image.¦Le présent travail a pour objectif de déterminer le potentiel des reconstructions itératives statistiques pour réduire au minimum les doses délivrées lors d'examens CT chez l'enfant et le jeune adulte tout en conservant une qualité d'image permettant le diagnostic, ceci afin de proposer des protocoles optimisés.¦L'optimisation d'un protocole d'examen CT nécessite de pouvoir évaluer la dose délivrée et la qualité d'image utile au diagnostic. Alors que la dose est estimée au moyen d'indices CT (CTDIV0| et DLP), ce travail a la particularité d'utiliser deux approches radicalement différentes pour évaluer la qualité d'image. La première approche dite « physique », se base sur le calcul de métriques physiques (SD, MTF, NPS, etc.) mesurées dans des conditions bien définies, le plus souvent sur fantômes. Bien que cette démarche soit limitée car elle n'intègre pas la perception des radiologues, elle permet de caractériser de manière rapide et simple certaines propriétés d'une image. La seconde approche, dite « clinique », est basée sur l'évaluation de structures anatomiques (critères diagnostiques) présentes sur les images de patients. Des radiologues, impliqués dans l'étape d'évaluation, doivent qualifier la qualité des structures d'un point de vue diagnostique en utilisant une échelle de notation simple. Cette approche, lourde à mettre en place, a l'avantage d'être proche du travail du radiologue et peut être considérée comme méthode de référence.¦Parmi les principaux résultats de ce travail, il a été montré que les algorithmes itératifs statistiques étudiés en clinique (ASIR?, VEO?) ont un important potentiel pour réduire la dose au CT (jusqu'à-90%). Cependant, par leur fonctionnement, ils modifient l'apparence de l'image en entraînant un changement de texture qui pourrait affecter la qualité du diagnostic. En comparant les résultats fournis par les approches « clinique » et « physique », il a été montré que ce changement de texture se traduit par une modification du spectre fréquentiel du bruit dont l'analyse permet d'anticiper ou d'éviter une perte diagnostique. Ce travail montre également que l'intégration de ces nouvelles techniques de reconstruction en clinique ne peut se faire de manière simple sur la base de protocoles utilisant des reconstructions classiques. Les conclusions de ce travail ainsi que les outils développés pourront également guider de futures études dans le domaine de la qualité d'image, comme par exemple, l'analyse de textures ou la modélisation d'observateurs pour le CT.¦-¦Computed tomography (CT) is an imaging technique in which interest has been growing since it first began to be used in the early 1970s. In the clinical environment, this imaging system has emerged as the gold standard modality because of its high sensitivity in producing accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase of the number of CT examinations performed has raised concerns about the potential negative effects of ionizing radiation on the population. To insure a benefit - risk that works in favor of a patient, it is important to balance image quality and dose in order to avoid unnecessary patient exposure.¦If this balance is important for adults, it should be an absolute priority for children undergoing CT examinations, especially for patients suffering from diseases requiring several follow-up examinations over the patient's lifetime. Indeed, children and young adults are more sensitive to ionizing radiation and have an extended life span in comparison to adults. For this population, the risk of developing cancer, whose latency period exceeds 20 years, is significantly higher than for adults. Assuming that each patient examination is justified, it then becomes a priority to optimize CT acquisition protocols in order to minimize the delivered dose to the patient. Over the past few years, CT advances have been developing at a rapid pace. Since 2009, new iterative image reconstruction techniques, called statistical iterative reconstructions, have been introduced in order to decrease patient exposure and improve image quality.¦The goal of the present work was to determine the potential of statistical iterative reconstructions to reduce dose as much as possible without compromising image quality and maintain diagnosis of children and young adult examinations.¦The optimization step requires the evaluation of the delivered dose and image quality useful to perform diagnosis. While the dose is estimated using CT indices (CTDIV0| and DLP), the particularity of this research was to use two radically different approaches to evaluate image quality. The first approach, called the "physical approach", computed physical metrics (SD, MTF, NPS, etc.) measured on phantoms in well-known conditions. Although this technique has some limitations because it does not take radiologist perspective into account, it enables the physical characterization of image properties in a simple and timely way. The second approach, called the "clinical approach", was based on the evaluation of anatomical structures (diagnostic criteria) present on patient images. Radiologists, involved in the assessment step, were asked to score image quality of structures for diagnostic purposes using a simple rating scale. This approach is relatively complicated to implement and also time-consuming. Nevertheless, it has the advantage of being very close to the practice of radiologists and is considered as a reference method.¦Primarily, this work revealed that the statistical iterative reconstructions studied in clinic (ASIR? and VECO have a strong potential to reduce CT dose (up to -90%). However, by their mechanisms, they lead to a modification of the image appearance with a change in image texture which may then effect the quality of the diagnosis. By comparing the results of the "clinical" and "physical" approach, it was showed that a change in texture is related to a modification of the noise spectrum bandwidth. The NPS analysis makes possible to anticipate or avoid a decrease in image quality. This project demonstrated that integrating these new statistical iterative reconstruction techniques can be complex and cannot be made on the basis of protocols using conventional reconstructions. The conclusions of this work and the image quality tools developed will be able to guide future studies in the field of image quality as texture analysis or model observers dedicated to CT.
Resumo:
In vivo dosimetry is a way to verify the radiation dose delivered to the patient in measuring the dose generally during the first fraction of the treatment. It is the only dose delivery control based on a measurement performed during the treatment. In today's radiotherapy practice, the dose delivered to the patient is planned using 3D dose calculation algorithms and volumetric images representing the patient. Due to the high accuracy and precision necessary in radiation treatments, national and international organisations like ICRU and AAPM recommend the use of in vivo dosimetry. It is also mandatory in some countries like France. Various in vivo dosimetry methods have been developed during the past years. These methods are point-, line-, plane- or 3D dose controls. A 3D in vivo dosimetry provides the most information about the dose delivered to the patient, with respect to ID and 2D methods. However, to our knowledge, it is generally not routinely applied to patient treatments yet. The aim of this PhD thesis was to determine whether it is possible to reconstruct the 3D delivered dose using transmitted beam measurements in the context of narrow beams. An iterative dose reconstruction method has been described and implemented. The iterative algorithm includes a simple 3D dose calculation algorithm based on the convolution/superposition principle. The methodology was applied to narrow beams produced by a conventional 6 MV linac. The transmitted dose was measured using an array of ion chambers, as to simulate the linear nature of a tomotherapy detector. We showed that the iterative algorithm converges quickly and reconstructs the dose within a good agreement (at least 3% / 3 mm locally), which is inside the 5% recommended by the ICRU. Moreover it was demonstrated on phantom measurements that the proposed method allows us detecting some set-up errors and interfraction geometry modifications. We also have discussed the limitations of the 3D dose reconstruction for dose delivery error detection. Afterwards, stability tests of the tomotherapy MVCT built-in onboard detector was performed in order to evaluate if such a detector is suitable for 3D in-vivo dosimetry. The detector showed stability on short and long terms comparable to other imaging devices as the EPIDs, also used for in vivo dosimetry. Subsequently, a methodology for the dose reconstruction using the tomotherapy MVCT detector is proposed in the context of static irradiations. This manuscript is composed of two articles and a script providing further information related to this work. In the latter, the first chapter introduces the state-of-the-art of in vivo dosimetry and adaptive radiotherapy, and explains why we are interested in performing 3D dose reconstructions. In chapter 2 a dose calculation algorithm implemented for this work is reviewed with a detailed description of the physical parameters needed for calculating 3D absorbed dose distributions. The tomotherapy MVCT detector used for transit measurements and its characteristics are described in chapter 3. Chapter 4 contains a first article entitled '3D dose reconstruction for narrow beams using ion chamber array measurements', which describes the dose reconstruction method and presents tests of the methodology on phantoms irradiated with 6 MV narrow photon beams. Chapter 5 contains a second article 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations. A dose reconstruction process specific to the use of the tomotherapy MVCT detector is presented in chapter 6. A discussion and perspectives of the PhD thesis are presented in chapter 7, followed by a conclusion in chapter 8. The tomotherapy treatment device is described in appendix 1 and an overview of 3D conformai- and intensity modulated radiotherapy is presented in appendix 2. - La dosimétrie in vivo est une technique utilisée pour vérifier la dose délivrée au patient en faisant une mesure, généralement pendant la première séance du traitement. Il s'agit de la seule technique de contrôle de la dose délivrée basée sur une mesure réalisée durant l'irradiation du patient. La dose au patient est calculée au moyen d'algorithmes 3D utilisant des images volumétriques du patient. En raison de la haute précision nécessaire lors des traitements de radiothérapie, des organismes nationaux et internationaux tels que l'ICRU et l'AAPM recommandent l'utilisation de la dosimétrie in vivo, qui est devenue obligatoire dans certains pays dont la France. Diverses méthodes de dosimétrie in vivo existent. Elles peuvent être classées en dosimétrie ponctuelle, planaire ou tridimensionnelle. La dosimétrie 3D est celle qui fournit le plus d'information sur la dose délivrée. Cependant, à notre connaissance, elle n'est généralement pas appliquée dans la routine clinique. Le but de cette recherche était de déterminer s'il est possible de reconstruire la dose 3D délivrée en se basant sur des mesures de la dose transmise, dans le contexte des faisceaux étroits. Une méthode itérative de reconstruction de la dose a été décrite et implémentée. L'algorithme itératif contient un algorithme simple basé sur le principe de convolution/superposition pour le calcul de la dose. La dose transmise a été mesurée à l'aide d'une série de chambres à ionisations alignées afin de simuler la nature linéaire du détecteur de la tomothérapie. Nous avons montré que l'algorithme itératif converge rapidement et qu'il permet de reconstruire la dose délivrée avec une bonne précision (au moins 3 % localement / 3 mm). De plus, nous avons démontré que cette méthode permet de détecter certaines erreurs de positionnement du patient, ainsi que des modifications géométriques qui peuvent subvenir entre les séances de traitement. Nous avons discuté les limites de cette méthode pour la détection de certaines erreurs d'irradiation. Par la suite, des tests de stabilité du détecteur MVCT intégré à la tomothérapie ont été effectués, dans le but de déterminer si ce dernier peut être utilisé pour la dosimétrie in vivo. Ce détecteur a démontré une stabilité à court et à long terme comparable à d'autres détecteurs tels que les EPIDs également utilisés pour l'imagerie et la dosimétrie in vivo. Pour finir, une adaptation de la méthode de reconstruction de la dose a été proposée afin de pouvoir l'implémenter sur une installation de tomothérapie. Ce manuscrit est composé de deux articles et d'un script contenant des informations supplémentaires sur ce travail. Dans ce dernier, le premier chapitre introduit l'état de l'art de la dosimétrie in vivo et de la radiothérapie adaptative, et explique pourquoi nous nous intéressons à la reconstruction 3D de la dose délivrée. Dans le chapitre 2, l'algorithme 3D de calcul de dose implémenté pour ce travail est décrit, ainsi que les paramètres physiques principaux nécessaires pour le calcul de dose. Les caractéristiques du détecteur MVCT de la tomothérapie utilisé pour les mesures de transit sont décrites dans le chapitre 3. Le chapitre 4 contient un premier article intitulé '3D dose reconstruction for narrow beams using ion chamber array measurements', qui décrit la méthode de reconstruction et présente des tests de la méthodologie sur des fantômes irradiés avec des faisceaux étroits. Le chapitre 5 contient un second article intitulé 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations'. Un procédé de reconstruction de la dose spécifique pour l'utilisation du détecteur MVCT de la tomothérapie est présenté au chapitre 6. Une discussion et les perspectives de la thèse de doctorat sont présentées au chapitre 7, suivies par une conclusion au chapitre 8. Le concept de la tomothérapie est exposé dans l'annexe 1. Pour finir, la radiothérapie «informationnelle 3D et la radiothérapie par modulation d'intensité sont présentées dans l'annexe 2.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Nominal Unification is an extension of first-order unification where terms can contain binders and unification is performed modulo α equivalence. Here we prove that the existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce nominal unification problems to a sequence of freshness and equalities between atoms, modulo a permutation, using ideas as Paterson and Wegman for first-order unification. Second, we prove that solvability of these reduced problems may be checked in quadràtic time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging, we could solve these reduced problems more efficiently
Resumo:
The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.