962 resultados para Irreversible hydrocolloid
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Resumo:
O presente estudo diz respeito a um trabalho de pesquisa no âmbito de uma Tese de Mestrado incluída no segundo ciclo de estudos do curso de Engenharia Geotécnica e Geoambiente, realizado sobre as condições de desidroxilação para a obtenção de metacaulino com propriedades cimentíceas, a partir da fracção argilosa proveniente dos finos residuais da produção de areias de natureza granítica. O produto resultante da alteração e desintegração dos feldspatos constituintes dos granitos são ricos em caulinite. Na natureza e em particular no Norte de Portugal, existem significativos depósitos cauliníticos com características potenciadoras para a produção de metacaulino. O metacaulino utilizado neste estudo foi obtido de uma amostra de argila submetida a 750oC, por um período de tempo de 30 minutos, processo que permitiu a desidroxilação quase total da matéria-prima, transformando esta numa fase amorfa e irreversível, com propriedades pozolânicas. Os metacaulinos, também conhecidos por geopolímeros, são produtos de fácil produção utilizando uma matéria-prima abundante e proporcionam a obtenção de novos produtos que permitem a substituição parcial do cimento Portland normal na composição das pastas de betão, com vantagens significativas no comportamento mecânico e na resistência aos agentes atmosféricos. Neste estudo são apresentados os resultados dos ensaios de caracterização da matéria-prima, das condições de calcinação e do produto resultante da desidroxilação, nomeadamente a determinação da pozolanicidade e das características fundamentais para a aplicabilidade do produto. No âmbito da especialidade de Georrecursos, consideramos que este trabalho está perfeitamente adequado, já que, para além do estudo para o conhecimento das propriedades da matéria-prima, foi possível, através das alterações introduzidas com o tratamento térmico, obter um novo produto, cuja utilização terá importantes reflexos na sustentabilidade dos recursos naturais e sua utilização.
Resumo:
O presente trabalho, realizado no âmbito da Tese de Mestrado, tem como principal objectivo estudar as características pozolânicas dos materiais da zona de Arganil para substituição parcial do cimento Portland com o objectivo de intensificar certas qualidades devido à diminuição da porosidade do betão. Estas qualidades são interessantes quando se procura maior durabilidade. Para tal, foram realizados diversos ensaios para a caracterização física, química e mineralógica dos produtos. Os metacaulinos utilizados foram obtidos de amostras de argila submetidas a calcinação (750oC, durante uma hora), processo que permitiu a desidroxilação quase total da matéria-prima, transformando esta numa fase amorfa e irreversível, com propriedades pozolânicas. São apresentados os resultados dos ensaios de caracterização da matéria-prima, das condições de calcinação e do produto resultante da desidroxilação, nomeadamente a determinação da pozolanicidade e superfície específica e das características fundamentais para a aplicabilidade do produto. Descreve ainda o emprego do metacaulino em betões de resistência convencional. Estudou-se a influência do emprego do metacaulino (15% de substituição de cimento, em massa) na resistência à flexão e à compressão (aos 28 dias) em argamassas e o emprego de metacaulino (10%, 15% e 20% de substituição de cimento, em massa) na resistência à compressão (3, 7 e 28 dias) no betão.
Resumo:
The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH ¼ 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 10 5–1.20 10 4 molL 1, with a limit of detection (LOD) of 9.5 10 6 molL 1. Using the FIA method, a linear range between 2.00 10 6–9.00 10 5 molL 1 and an LODof 1.9 10 6 molL 1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.
Resumo:
The electroactivity of butylate (BTL) is studied by cyclic voltammetry (CV) and square wave voltammetry (SWV) at a glassy carbon electrode (GCE) and a hanging mercury drop electrode (HMDE). Britton–Robinson buffer solutions of pH 1.9–11.5 are used as supporting electrolyte. CV voltammograms using GCE show a single anodic peak regarding the oxidation of BTL at +1.7V versus AgCl/ Ag, an irreversible process controlled by diffusion. Using a HMDE, a single cathodic peak is observed, at 1.0V versus AgCl/Ag. The reduction of BTL is irreversible and controlled by adsorption. Mechanism proposals are presented for these redox transformations. Optimisation is carried out univaryingly. Linearity ranges were 0.10–0.50 mmol L-1 and 2.0–9.0 µmolL-1 for anodic and cathodic peaks, respectively. The proposed method is applied to the determination of BTL in waters. Analytical results compare well with those obtained by an HPLC method.
Resumo:
A detailed study of voltammetric behavior of ethiofencarb (ETF) is reported using glassy carbon electrode (GCE) and hanging mercury drop electrode (HMDE). With GCE, it is possible to verify that the oxidative mechanism is irreversible, independent of pH, and the maximum intensity current was observed at +1.20 V vs. AgCl/Ag at pH 1.9. A linear calibration line was obtained from 1.0x10-4 to 8.0x10-4 mol L-1 with SWV method. To complete the electrochemical knowledge of ETF pesticide, the reduction was also explored with HMDE. A well-defined peak was observed at –1.00V vs. AgCl/Ag in a large range of pH with higher signal at pH 7.0. Linearity was obtained in 4.2x10-6 and 9.4x10-6 mol L-1 ETF concentration range. An immediate alkaline hydrolysis of ETF was executed, producing a phenolic compound (2-ethylthiomethylphenol) (EMP), and the electrochemical activity of the product was examined. It was deduced that it is oxidized on GCE at +0.75V vs. AgCl/Ag with a maximum peak intensity current at pH 3.2, but the compound had no reduction activity on HMDE. Using the decrease of potential peak, a flow injection analysis (FIA) system was developed connected to an amperometric detector, enabling the determination of EMP over concentration range of 1.0x10-7 and 1.0x10-5 mol L-1 at a sampling rate of 60 h-1. The results provided by FIA methodology were performed by comparison with results from high-performance liquid chromatography (HPLC) technique and demonstrated good agreement with relative deviations lower than 4%. Recovery trials were performed and the obtained values were between 98 and 104%.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
Introdução: A capacidade auditiva dos doentes com neoplasias de cabeça e pescoço e tumores cerebrais pode ser comprometida com os tratamentos antineoplásicos realizados. A Quimioterapia com cisplatina pode provocar perda auditiva de condução ou neurossensorial, podendo agravar-se quando combinada com Radioterapia (RT). O objectivo deste trabalho foi a análise da relação entre a Terapia Combinada (Cisplatina+RT) e a Radioterapia isolada, e os seus efeitos adversos sobre a audição tendo em consideração a inclusão das estruturas do ouvido no campo de tratamento de RT. Métodos: Foram seguidos 10 doentes submetidos a Terapia Combinada (grupo TC) e 11 a Radioterapia isolada (grupo RT). A avaliação audiológica realizou-se antes do inicio (M1), no fim (M2) e um mês após (M3) o termo dos tratamentos e incluiu anamnese audiológica, otoscopia e audiometria tonal. Resultados: No grupo TC, 94,4% dos doentes apresentaram uma relação directamente proporcional entre a dose de radiação na cóclea e a perda auditiva. Esta relação só se verificou em 31% dos doentes do grupo RT, tendo-se verificado diferenças significativas entre grupos (p <0,001). Conclusões: Verificou-se maior incidência da perda auditiva no grupo TC relativamente ao grupo RT. Sugere-se um melhor planeamento do tratamento de RT, reduz - indo a dose à cóclea com o objectivo de minimizar a perda auditiva neurossensorial irreversível, sobretudo quando são utilizadas as duas modalidades de tratamento.
Resumo:
Inventories and vertical distribution of (137)Cs were determined in La Plata region undisturbed soils, Argentina. A mean inventory value of 891 ± 220 Bq/m(2) was established, which is compatible with the values expected from atmospheric weapon tests fallout. The study was complemented with pH, organic carbon fraction, texture and mineralogical soil analyses. Putting together Southern Hemisphere (137)Cs inventory data, it is possible to correlate these data with the mean annual precipitations. The large differences in (137)Cs concentration profiles were attributed to soil properties, especially the clay content and the pH values. A convection-dispersion model with irreversible retention was used to fit the activity concentration profiles. The obtained effective diffusion coefficient and effective convection velocity parameters values were in the range from 0.2 cm(2)/y to 0.4 cm(2)/y and from 0.23 cm/y to 0.43 cm/y, respectively. These data are in agreement with values reported in literature. In general, with the growth of clay content in the soil, there was an increase in the transfer rate from free to bound state. Finally, the highest transfer rate from free to bound state was obtained for soil pH value equal to 8.
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.
Resumo:
The electrochemical properties of rhodium(III) 1-3 and iridium(III) 4-6 complexes containing bis(pyrazolyl)alkane ligands [MCp*Cl(R2C(3,5-R'2pz)2)]X (M = Rh (1) or Ir (4), R = R' = H, X = Cl; M = Rh (2) or Ir (5), R=H,R'=Me,X=Cl;M=Rh(3) or Ir (6), R=Me,R'=H,X=OTf;pz=pyrazolyl;Cp*=η5-C5Me5) were investigated by cyclic voltammetry and controlled potential electrolysis. They exhibit two sequential irreversible reductions assigned to the MIII → MII and MII → MI reductions, which are dependent on the methylation of the bis(pyrazolyl)alkane ligands.
Resumo:
The reactions between 4'-phenyl-terpyridine (L) and nitrate, acetate or chloride Cu(II) salts led to the formation of [Cu(NO3)(2)L] (1), [Cu(OCOCH3)(2)L]center dot CH2Cl2 (2 center dot CH2Cl2)and [CuCl2L]center dot[Cu(Cl)(mu-Cl)L](2) (3), respectively. Upon dissolving 1 in mixtures of DMSO-MeOH or EtOH-DMF the compounds [Cu(H2O){OS(CH3)(2)}L]-(NO3)(2) (4) and [Cu(HO)(CH3CH2OH)L](NO3) (5) were obtained, in this order. Reaction of 3 with AgSO3CF3 led to [CuCl(OSO2CF3)L] (6). The compounds were characterized by ESI-MS, IR, elemental analysis, electrochemical techniques and, for 2-6, also by single crystal X-ray diffraction. They undergo, by cyclic voltammetry, two single-electron irreversible reductions assigned to Cu(II) -> Cu(I)and Cu(I) -> Cu(0) and, for those of the same structural type, the reduction potential appears to correlate with the summation of the values of the Lever electrochemical EL ligand parameter, which is reported for the first time for copper complexes. Complexes 1-6 in combination with TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl radical) can exhibit a high catalytic activity, under mild conditions and in alkaline aqueous solution, for the aerobic oxidation of benzylic alcohols. Molar yields up to 94% (based on the alcohol) with TON values up to 320 were achieved after 22 h.
Resumo:
The behavior of copper(II) complexes of pentane-2,4-dione and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, [Cu(acac)(2) (1) and [Cu(HFacac)(2)(H2O)] (2), in ionic liquids and molecular organic solvents, was studied by spectroscopic and electrochemical techniques. The electron paramagnetic resonance characterization (EPR) showed well-resolved spectra in most solvents. In general the EPR spectra of [Cu(acac)(2)] show higher g(z) values and lower hyperfine coupling constants, A(z), in ionic liquids than in organic solvents, in agreement with longer Cu-O bond lengths and higher electron charge in the copper ion in the ionic liquids, suggesting coordination of the ionic liquid anions. For [Cu(HFacac)(2)(H2O)] the opposite was observed suggesting that in ionic liquids there is no coordination of the anions and that the complex is tetrahedrically distorted. The redox properties of the Cu(II) complexes were investigated by cyclic voltammetry (CV) at a Pt electrode (d = 1 mm), in bmimBF(4) and bmimNTf(2) ionic liquids and, for comparative purposes, in neat organic solvents. The neutral copper(II) complexes undergo irreversible reductions to Cu(I) and Cu(0) species in both ILs and common organic solvents (CH2Cl2 or acetonitrile), but, in ILs, they are usually more easier to reduce (less cathodic reduction potential) than in the organic solvents. Moreover, 1 and 2 are easier to reduce in bmimNTf(2) than in bmimBF(4) ionic liquid. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider a quantity-setting duopoly model, and we study the decision to move first or second, by assuming that the firms produce differentiated goods and that there is some demand uncertainty. The competitive phase consists of two periods, and in either period, the firms can make a production decision that is irreversible. As far as the firms are allowed to choose (non-cooperatively) the period they make the decision, we study the circumstances that favour sequential rather than simultaneous decisions.
Resumo:
Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(Bu2Sn)-Bu-n{C5H9C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH center dot center dot center dot O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(Bu2Sn)-Bu-n(HL)(2)] [HL=C3H5C(O)NHO (1a), C6H11C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R2Sn(C5H9C(O)NHO)(2)] [R=Bu-n (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R = Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with Sn-O and Sn-C ruptures, whereas for the alkyl (R=Bu-n) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with Sn-O bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn-II species with the cis geometry, features that can be of biological significance.