920 resultados para Interleukin-10 -- administration
Resumo:
Ticks are blood-feeding arthropods that may secrete immunosuppressant molecules, which inhibit host inflammatory and immune responses and provide survival advantages to pathogens at tick bleeding sites in hosts. In the current work, two families of immunoregulatory peptides, hyalomin-A and -B, were first identified from salivary glands of hard tick Hyalomma asiaticum asiaticum. Three copies of hyalomin-A are encoded by an identical gene and released from the same protein precursor. Both hyalomin-A and -B can exert significant anti-inflammatory functions, either by directly inhibiting host secretion of inflammatory factors such as tumor necrosis factor-alpha, monocyte chemotectic protein-1, and interferon-gamma or by indirectly increasing the secretion of immunosuppressant cytokine of interleukin-10. Hyalomin-A and -B were both found to potently scavenge free radical in vitro in a rapid manner and inhibited adjuvant-induced inflammation in mouse models in vivo. The JNK/SAPK subgroup of the MAPK signaling pathway was involved in such immunoregulatory functions of hyalomin-A and -B. These results showed that immunoregulatory peptides of tick salivary glands suppress host inflammatory response by modulating cytokine secretion and detoxifying reactive oxygen species.
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.
Resumo:
BACKGROUND: In contrast to adults, ulcers are un-common in Helicobacter pylori-infected children. Since immunological determinants influence the outcome of H. pylori infection, we have investigated mucosal T cell responses in H. pylori-infected children and compared them with those of adults and negative controls. MATERIAL AND METHODS: Mucosal biopsies were obtained from 43 patients undergoing an upper GI endoscopy for dyspeptic symptoms. The concentrations of released cytokines and the density of CD3+, CD25+ and CD69+cells were evaluated by flow cytometry, and the numbers of cytokine-secreting cells were measured by ELISPOT. RESULTS: The numbers of isolated antral CD3+ lymphocytes were only significantly raised in infected adults compared with noninfected controls (p < 0.05), whereas the proportion of CD3+ cells expressing activation markers (CD25 or CD69) remained low. In the stomach, IFN-gamma concentrations increased in infected children and infected adults compared with controls (p < 0.05), but IFN-gamma concentrations were tenfold lower in children than in adults (p < 0.01). IL-2, IL-4, IL-10 and TNF-alpha concentrations were similar in infected and in uninfected children and adults. In contrast, in the duodenum, IFN-gamma, as well as IL-4 and IL-10 concentrations were only increased in infected children compared with controls (p < 0.05). The concentrations of these cytokines were similar in both groups of adults who, however, like children, displayed a higher number of duodenal IL-4-secreting cells compared to controls (p < 0.05). CONCLUSION: These results suggest that IFN-gamma secretion in the stomach of H. pylori-infected patients is lower in children than in adults. This could protect children from development of severe gastro-duodenal diseases such as ulcer disease. In addition, infected patients are characterised by a dysregulation of the mucosal cytokine secretion at distance from the infection site.
Resumo:
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by polyclonal B cell activation and by the production of anti-double-stranded (ds) DNA antibodies. Given the inhibitory effects of IL-12 on humoral immune responses, we investigated whether IL-12 displayed such an activity on in vitro immunoglobulin production by SLE PBMC. Spontaneous IgG, IgG1, IgG2, IgG3 and IgM antibody production was dramatically reduced by addition of IL-12. These results were confirmed by Elispot assays detecting IgG- and anti-dsDNA-secreting cells. While IL-6 and TNF titres measured in PBMC supernatants were not modified by addition of IL-12, interferon-gamma (IFN-gamma) titres were up-regulated and IL-10 production down-regulated. Since addition of IFN-gamma did not down-regulate immunoglobulin production and since the inhibitory activity of IL-12 on immunoglobulin synthesis was not suppressed by anti-IFN-gamma antibody, we concluded that the effect of IL-12 on immunoglobulin production was not mediated through IFN-gamma. Our data also argue against the possibility that down-regulation of endogenous IL-10 production was responsible for the effect of IL-12. Thus, inhibition of IL-10 production by IFN-gamma was not accompanied by inhibition of immunoglobulin production, and conversely, restoration of IL-10 production by anti-IFN-gamma antibody did not suppress the inhibitory activity exerted by IL-12 on immunoglobulin production. Taken together, our data indicate that reduction of excessive immunoglobulin and anti-dsDNA antibody production by lupus PBMC can be achieved in vitro by IL-12, independently of IFN-gamma and IL-10 modulation.
Resumo:
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB patients receiving antiretroviral therapy (ART). TB-IRIS could be associated with an exaggerated immune response to TB-antigens. We compared the recovery of IFNγ responses to recall and TB-antigens and explored in vitro innate cytokine production in TB-IRIS patients.
Resumo:
Objectives: Cilostazol improves walking distance in peripheral arterial disease (PAD) patients. The study objectives were to assess the effects of cilostazol on walking distance, followed by the additional assessment of cilostazol on exercise-induced ischaemiaereperfusion injury in such patients.<br/><br/>Methods: PAD patients were prospectively recruited to a double-blinded, placebo-controlled trial. Patients were randomised to receive either cilostazol 100 mg or placebo twice a day. The primary end-point was an improvement in walking distance. Secondary end-points included the assessment of oxygen-derived free-radical generation, antioxidant consumption and other markers of the in?ammatory cascade. Initial and absolute claudication distances (ICDs and ACDs, respectively) were measured on a treadmill. In?ammatory response was assessed before and 30 min post-exercise by measuring lipid hydroperoxide, ascorbate, atocopherol, b-carotene, P-selectin, intracellular and vascular cell-adhesion molecules (I-CAM and V-CAM), thromboxane B2 (TXB2), interleukin-6, interleukin-10, high-sensitive C-reactive protein (hsCRP), albuminecreatinine ratio (ACR) and urinary levels of p75TNF receptor. All tests were performed at baseline and 6 and 24 weeks.<br/><br/>Results: One hundred and six PAD patients (of whom 73 were males) were recruited and successfully randomised from December 2004 to January 2006. Patients who received cilostazol demonstrated a more signi?cant improvement in the mean percentage change from baseline in ACD (77.2% vs. 26.6% at 6 weeks, pZ0.026 and 161.7% vs. 79.0% at 24 weeks, pZ0.048) as compared to the placebo. Cilostazol reduced lipid hydroperoxide levels compared to a placebo-related increase before and after exercise (6 weeks: pre-exercise: 11.8% vs.
Resumo:
Cardiac surgery modulates pro- and anti-inflammatory cytokine balance involving plasma tumour necrosis factor alpha (TNFa) and interleukin-10 (IL-10) together with urinary transforming growth factor beta-1 (TGFß1), interleukin-1 receptor antagonist (IL1ra) and tumour necrosis factor soluble receptor-2 (TNFsr2). Effects on post-operative renal function are unclear. We investigated if following cardiac surgery there is a relationship between cytokine (a) phenotype and renal outcome; (b) genotype and phenotype and (c) genotype and renal outcome. Since angiotensin-2 (AG2), modulates TGFß1 production, we determined whether angiotensin converting enzyme insertion/deletion (ACE I/D) genotype affects urinary TGFß1 phenotype as well as renal outcome.
Resumo:
<p>Background: The interleukin 10 knockout mouse (IL10-KO) is a model of human inflammatory bowel disease (IBD) used to Study host microbial interactions and the action of potential therapeutics. Using Affymetrix data analysis, important signaling pathways and transcription factors relevant to gut inflammation and antiinflammatory probiotics were identified.</p><p>Methods: Affymetrix microarray analysis on both wildtype (WT) and IL10-KO mice orally administered with and without the probiotic VSL#3 was performed and the results validated by real-time polymerase chain reaction (PCR), immunocytochemistry, proteomics, and histopathology. Changes in metabolically active bacteria were assessed with denaturing gradient gel electrophoresis (DGGE).</p><p>Results: Inflammation in IL10-KO mice was characterized by differential regulation of inflammatory, nuclear receptor, lipid, and xenobiotic signaling pathways. Probiotic intervention resulted in downregulation of CXCL9 (fold change [FC] = -3.98, false discovery rate [FDR] = 0.019), CXCL10 (FC = -4.83, FDR = 0.0008), CCL5 (FC -3.47 FDR = 0.017), T-cell activation (Itgal [FC = -4.72, FDR = 0.00009], Itgae [FC = -2.54 FDR = 0.0044]) and the autophagy gene IRGM (FC = -1.94, FDR = 0.01), a recently identified susceptibility gene in human IBD. Consistent with a marked reduction in integrins, probiotic treatment decreased the number of CCL5+ CD3+ double-positive T Cells and upregulated galectin2, which triggers apoptosis of activated T cells. Importantly, genes associated with lipid and PPAR signaling (PPAR alpha [FC = 2.36, FDR = 0.043], PPARGC1 alpha [FC 2.58, FDR = 0.016], Nrld2 [FC = 3.11, FDR = 0.0067]) were also upregulated. Altered microbial diversity was noted in probiotic-treated mice.</p><p>Conclusions: Bioinformatics analysis revealed important immune response. phagocytic and inflammatory pathways dominated by elevation of T-helper cell 1 type (TH1) transcription factors in IL10-KO mice. Probiotic intervention resulted in a site-specific reduction of these pathways but importantly upregulated PPAR, xenobiotic, and lipid signaling genes. potential antagonists of NF-kappa B inflammatory pathways.</p>
Resumo:
Objectives: This study sought to investigate the effect of a multiple micronutrient supplement on left ventricular ejection fraction (LVEF) in patients with heart failure. Background: Observational studies suggest that patients with heart failure have reduced intake and lower concentrations of a number of micronutrients. However, there have been very few intervention studies investigating the effect of micronutrient supplementation in patients with heart failure. Methods: This was a randomized, double-blind, placebo-controlled, parallel-group study involving 74 patients with chronic stable heart failure that compared multiple micronutrient supplementation taken once daily versus placebo for 12 months. The primary endpoint was LVEF assessed by cardiovascular magnetic resonance imaging or 3-dimensional echocardiography. Secondary endpoints were Minnesota Living With Heart Failure Questionnaire score, 6-min walk test distance, blood concentrations of N-terminal prohormone of brain natriuretic peptide, C-reactive protein, tumor necrosis factor alpha, interleukin-6, interleukin-10, and urinary levels of 8-iso-prostaglandin F2 alpha. Results: Blood concentrations of a number of micronutrients increased significantly in the micronutrient supplement group, indicating excellent compliance with the intervention. There was no significant difference in mean LVEF at 12 months between treatment groups after adjusting for baseline (mean difference: 1.6%, 95% confidence interval: -2.6 to 5.8, p = 0.441). There was also no significant difference in any of the secondary endpoints at 12 months between treatment groups. Conclusions: This study provides no evidence to support the routine treatment of patients with chronic stable heart failure with a multiple micronutrient supplement. (Micronutrient Supplementation in Patients With Heart Failure [MINT-HF]; NCT01005303).
Resumo:
Only long-term home oxygen therapy has been shown in randomised controlled trials to increase survival in chronic obstructive pulmonary disease (COPD). There have been no trials assessing the effect of inhaled corticosteroids and long-acting bronchodilators, alone or in combination, on mortality in patients with COPD, despite their known benefit in reducing symptoms and exacerbations. The "TOwards a Revolution in COPD Health" (TORCH) survival study is aiming to determine the impact of salmeterol/fluticasone propionate (SFC) combination and the individual components on the survival of COPD patients. TORCH is a multicentre, randomised, double-blind, parallel-group, placebo-controlled study. Approximately 6,200 patients with moderate-to-severe COPD were randomly assigned to b.i.d. treatment with either SFC (50/500 microg), fluticasone propionate (500 microg), salmeterol (50 microg) or placebo for 3 yrs. The primary end-point is all-cause mortality; secondary end-points are COPD morbidity relating to rate of exacerbations and health status, using the St George's Respiratory Questionnaire. Other end-points include other mortality and exacerbation end-points, requirement for long-term oxygen therapy, and clinic lung function. Safety end-points include adverse events, with additional information on bone fractures. The first patient was recruited in September 2000 and results should be available in 2006. This paper describes the "TOwards a Revolution in COPD Health" study and explains the rationale behind it.
Resumo:
<p>Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.</p>
Resumo:
We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.
Resumo:
The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.
Resumo:
Regulatory T cells control immune responses to self- and foreign-antigens and play a major role in maintaining the balance between immunity and tolerance. This article reviews recent key developments in the field of CD4+CD25+Foxp3+ regulatory T (TREG) cells. It presents their characteristics and describes their range of activity and mechanisms of action. Some models of diseases triggered by the imbalance between TREG cells and effector pathogenic T cells are described and their potential therapeutic applications in humans are outlined.