970 resultados para Intelligent Transportation Systems,Intelligent Traffic Lights,GLOSA,V2X,traffic signal optimization
Resumo:
The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.
Resumo:
Today’s material flow systems for mass customization or dynamic productions are usually realized with manual transportation systems. However new concepts in the domain of material flow and device control like function-oriented modularization and intelligent multi-agent-systems offer the possibility to employ changeable and automated material flow systems in dynamic production structures. These systems need the ability to react on unplanned and unexpected events autonomously.
Resumo:
An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation.
Resumo:
The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.
Resumo:
Este trabajo se enmarca dentro del ámbito de las Ciudades Inteligentes. Una Ciudad Inteligente se puede definir como aquella ciudad que usa las tecnologías de la información y las comunicaciones para hacer que tanto su infraestructura crítica, como sus componentes y servicios públicos ofrecidos sean más interactivos, eficientes y los ciudadanos puedan ser más conscientes de ellos. Se trata de un concepto emergente que presenta una serie de retos de diseño que se deben abordar. Dos retos importantes son la variabilidad del contexto con el tiempo y la incertidumbre en la información del contexto. Una parte fundamental de estos sistemas, y que permite abordar estos retos, son los mecanismos de toma de decisión. Estos mecanismos permiten a los sistemas modificar su comportamiento en función de los cambios que detecten en su contexto, de manera que puedan adaptarse y responder adecuadamente a la situación en cada momento. Este trabajo tiene como objetivo el desarrollo de algoritmos de toma de decisión en el marco de las Ciudades Inteligentes. En particular, se ha diseñado e implementado, utilizando el software MATLAB, un algoritmo de toma de decisión que aborda los retos mencionados y que se puede aplicar en una de las áreas que engloban las Ciudades Inteligentes: los Sistemas Inteligentes de Transporte. Este proyecto se estructura fundamentalmente en dos partes: una parte teórica y una parte práctica. En la parte teórica se trata de proporcionar al lector nociones básicas sobre los conceptos de Ciudad Inteligente y Sistemas Inteligentes de Transporte, así como de la toma de decisión. También se explican los pasos del procedimiento de la toma de decisión y se proporciona un estado del arte de los algoritmos de toma de decisión existentes. Por otro lado, la segunda parte de este proyecto es totalmente original, y en ella el autor propone un algoritmo de toma de decisión para ser aplicado en el ámbito de los Sistemas Inteligentes de Transporte y desarrolla la implementación en MATLAB del algoritmo mencionado. Por último, para demostrar su funcionamiento, se valida el algoritmo en un escenario de aplicación consistente en un sistema inteligente de gestión del tráfico. ABSTRACT. This master thesis is framed under Smart Cities environment. A Smart City can be defined as the use of Information and Communication Technologies to make the critical infrastructure components and services of a city more intelligent, interconnected and efficient and citizens can be also more aware of them. Smart City is a new concept which presents a novel set of design challenges that must be addressed. Two important challenges are the changeable context and the uncertainty of context information. One of the essential parts of Smart Cities, which enables to address these challenges, are decision making mechanisms. Based on the information collected of the context, these systems can be configured to change its behavior whenever certain changes are detected, so that they can adapt themselves and response to the current situation properly. This master thesis is aimed at developing decision making algorithms under Smart Cities framework. In particular, a decision making algorithm which addresses the abovementioned challenges and that can be applied to one of the main categories of Smart Cities, named Intelligent Transportation Systems, has been designed and implemented. To do so, MATLAB software has been used. This project is mainly structured in two parts: a theoretical part and a practical part. In theoretical part, basic ideas about the concept of Smart Cities and Intelligent Transportation Systems are given, as well as the concept of decision making. The steps of the decision making procedure are also explained and a state of the art of existing decision making algorithms is provided. On the other hand, the second part of this project is totally original. In this part, the author propose a decision making algorithm that can be applied to Intelligent Transportation Systems and develops the implementation of the algorithm in MATLAB. Finally, to show the operation of the algorithm, it is validated in an application scenario consisting in a smart traffic management system.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Operations Research and Development, McLean, Va.
Resumo:
Mode of access: Internet.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Transportation Department, Joint Program Office for Intelligent Transportation Systems, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Texas Department of Transportation, Austin
Resumo:
"HRDS-02/04-05(500)E"--P. [4] of cover.
Resumo:
"EDL# 13981"--P. [4] of cover.
Resumo:
This report summarizes the current state of the art in cooperative vehicle-highway automation systems in Europe and Asia based on a series of meetings, demonstrations, and site visits, combined with the results of literature review. This review covers systems that provide drivers with a range of automation capabilities, from driver assistance to fully automated driving, with an emphasis on cooperative systems that involve active exchanges of information between the vehicles and the roadside and among separate vehicles. The trends in development and deployment of these systems are examined by country, and the similarities and differences relative to the U.S. situation are noted, leading toward recommendations for future U.S. action. The Literature Review on Recent International Activity in Cooperative Vehicle-Highway Automation Systems is published separately as FHWA-HRT-13-025.