923 resultados para Image data hiding
Resumo:
Veterinary surgery for treatment of wild animals is becoming an increasingly demanding task because it involves animals of different anatomy, many of them are already stressed and treatment must be performed to the highest standard in the minimum period of time. Craniofacial alterations may occur for three main reasons: genetic, functional or a combination of both. It is possible to modify the functional cause using intraoral devices like inclined plane. The treatment planning can be made based on virtual 3D models and rapid prototyping. An approximately 9 months old, 3.7 kg male Brazilian fox (Lycalopex vetulus) was referred to the Veterinary Hospital. Physical examination showed malocclusion with a deviation of the mandible to the right side. The virtual 3D model of the head was generated based on CT image data. The 3D models and rapid prototyping opened up new possibilities for the surgical planning and treatment of wild animals.
Resumo:
Foreign bodies, although they are often found throughout the body, to a lesser degree in the face, still constitute a diagnostic challenge for the trauma surgeon. Its removal means danger of damaging important facial anatomic structures, even if its exact position from the image data was known. So, the objective is to describe a clinical report of a patient (42 years of age, male sex) who experienced falling to the ground, attended by the Department of Surgery and Traumatology Bucco-Maxillo-Facial Surgery, Faculty of Dentistry of Aracatuba, São Paulo State University, and 2 days after the trauma, he reported difficulty in mouth opening and pain. After clinical evaluation, we observed the presence of injury in the left preauricular region already in the process of healing. During the intraoral physical examination, a limitation of the mouth opening was noted. Radiographic posteroanterior and profile of the face showed 2 radiopaque foreign bodies in the left side, lying apparently at the region of the mandibular condylar process. Under local anesthesia, foreign body removal was carried from there with access to it through the preexisting facial injury. Further clinical examinations showed an improvement in mouth opening, absence of pain complaints, and/or functional complaints.
Resumo:
This paper presents a method for the sequential road feature delineation from digital images. It is based on a feedback loop between extrapolation and refinement steps of a given road centerline point, using in both steps correlation techniques. Firstly, a previously extracted road centerline point is linearly extrapolated, resulting in an approximate position. Secondly, this approximate position is corrected by comparing gray level profiles extracted perpendicularly to the extrapolation direction. This strategy is then repeated to allow the entire road centerline to be extracted or a stop point to be found. In order to initialize the extraction process, the operator needs to supply a starting point plus direction and width. Experimental results obtained from the application of the method to real image data are presented and discussed in this paper.
Resumo:
In this paper a photogrammetric method is proposed for refining 3D building roof contours extracted from airborne laser scanning data. It is assumed that laser-derived planar faces of roofs are potentially accurate, while laser-derived building roof contours are not well defined. First, polygons representing building roof contours are extracted from a high-resolution aerial image. In the sequence, straight-line segments delimitating each building roof polygon are projected onto the corresponding laser-derived roof planes by using a new line-based photogrammetric model. Finally, refined 3D building roof contours are reconstructed by connecting every pair of photogrammetrically- projected adjacent straight lines. The obtained results showed that the proposed approach worked properly, meaning that the integration of image data and laser scanning data allows better results to be obtained, when compared to the results generated by using only laser scanning data. © 2013 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work is to study some of the density estimation tec- niques and to apply to the segmentation of medical images. Medical images are used to help the diagnostic of tumor diseases as well as to plan and deliver treatment. A computer image is an array of values representing colors in some scale. The smallest element of the image to which it is possible to assign a value is called pixel. Segmen- tation is the process of dividing the image in portions through the classi¯cation of each pixel. The simplest way of classi¯cation is by thresholding, given the number of portions and the threshold values. Another method is constructing a histogram of the pixel values and assign a portion to each pike. The threshold is the mean between two pikes. As the histogram does not form a smooth curve it is di±cult to discern between true pikes and random variation. Density estimation methods allow the estimation of a smooth curve. Image data can be considered as mixture of different densities. In this project parametric and nonparametric methods for density estimation will be addressed and some of them are applied to CT image data
Resumo:
Purpose: To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. Methods: One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab(US Patent). A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE<0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Results: Bio-Optics: sample size, 97 +/- 22 cells; RE, 6.52 +/- 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 162 +/- 34 cells. CSO: sample size, 110 +/- 20 cells; RE, 5.98 +/- 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 157 +/- 45 cells. Konan: sample size, 80 +/- 27 cells; RE, 10.6 +/- 3.67; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 336 +/- 131 cells. Topcon: sample size, 87 +/- 17 cells; RE, 10.1 +/- 2.52; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 382 +/- 159 cells. Conclusions: A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.
Resumo:
As the available public cerebral gene expression image data increasingly grows, the demand for automated methods to analyze such large amount of data also increases. An important study that can be carried out on these data is related to the spatial relationship between gene expressions. Similar spatial density distribution of expression between genes may indicate they are functionally correlated, thus the identification of these similarities is useful in suggesting directions of investigation to discover gene interactions and their correlated functions. In this paper, we describe the use of a high-throughput methodology based on Voronoi diagrams to automatically analyze and search for possible local spatial density relationships between gene expression images. We tested this method using mouse brain section images from the Allen Mouse Brain Atlas public database. This methodology provided measurements able to characterize the similarity of the density distribution between gene expressions and allowed the visualization of the results through networks and Principal Component Analysis (PCA). These visualizations are useful to analyze the similarity level between gene expression patterns, as well as to compare connection patterns between region networks. Some genes were found to have the same type of function and to be near each other in the PCA visualizations. These results suggest cerebral density correlations between gene expressions that could be further explored. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To evaluate if the Breast Imaging Reporting and Data System (BI-RADS) ultrasound descriptor of orientation can be used in magnetic resonance imaging (MRI). Materials and Methods: We conducted a retrospective study to evaluate breast mass lesions identified by MRI from 2008 to 2010 who had ultrasound (US) and histopathologic confirmation. Lesions were measured in the craniocaudal (CC), anteroposterior (AP), and transverse (T) axes and classified as having a nonparallel orientation, longest axis perpendicular to Cooper's ligaments, or in a parallel orientation when the longest axis is parallel to Cooper's ligaments. The MR image data were correlated with the US orientation according to BI-RADS and histopathological diagnosis. Results: We evaluated 71 lesions in 64 patients. On MRI, 27 lesions (38.0%) were nonparallel (8 benign and 19 malignant), and 44 lesions (62.0%) were parallel (33 benign and 11 malignant). There was significant agreement between the lesion orientation on US and MRI (kappa value = 0.901). The positive predictive values (PPV) for parallel orientation malignancy on MR and US imaging were 70.4% and 73.1%, respectively. Conclusion: A descriptor of orientation for breast lesions can be used on MRI with PPV for malignant lesions similar to US. J. Magn. Reson. Imaging 2012; 36:13831388. (C) 2012 Wiley Periodicals, Inc.
Resumo:
ZUSAMMENFASSUNG Langzeitbeobachtungsstudien zur Landschaftsdynamik inSahelländern stehen generell einem defizitären Angebot anquantitativen Rauminformationen gegenüber. Der in Malivorgefundene lokal- bis regionalräumliche Datenmangelführte zu einer methodologischen Studie, die die Entwicklungvon Verfahren zur multi-temporalen Erfassung und Analyse vonLandschaftsveränderungsdaten beinhaltet. Für den RaumWestafrika existiert in großer Flächenüberdeckunghistorisches Fernerkundungsmaterial in Form hochauflösenderLuftbilder ab den 50er Jahren und erste erdbeobachtendeSatellitendaten von Landsat-MSS ab den 70er Jahren.Multitemporale Langzeitanalysen verlangen zur digitalenReproduzierbarkeit, zur Datenvergleich- undObjekterfaßbarkeit die a priori-Betrachtung derDatenbeschaffenheit und -qualität. Zwei, ohne verfügbare, noch rekonstruierbareBodenkontrolldaten entwickelte Methodenansätze zeigen nichtnur die Möglichkeiten, sondern auch die Grenzen eindeutigerradiometrischer und morphometrischerBildinformationsgewinnung. Innerhalb desÜberschwemmungsgunstraums des Nigerbinnendeltas im ZentrumMalis stellen sich zwei Teilstudien zur Extraktion vonquantitativen Sahelvegetationsdaten den radiometrischen undatmosphärischen Problemen:1. Präprozessierende Homogenisierung von multitemporalenMSS-Archivdaten mit Simulationen zur Wirksamkeitatmosphärischer und sensorbedingter Effekte2. Entwicklung einer Methode zur semi-automatischenErfassung und Quantifizierung der Dynamik derGehölzbedeckungsdichte auf panchromatischenArchiv-Luftbildern Die erste Teilstudie stellt historischeLandsat-MSS-Satellitenbilddaten für multi-temporale Analysender Landschaftsdynamik als unbrauchbar heraus. In derzweiten Teilstudie wird der eigens, mittelsmorphomathematischer Filteroperationen für die automatischeMusterkennung und Quantifizierung von Sahelgehölzobjektenentwickelte Methodenansatz präsentiert. Abschließend wird die Forderung nach kosten- undzeiteffizienten Methodenstandards hinsichtlich ihrerRepräsentativität für die Langzeitbeobachtung desRessourceninventars semi-arider Räume sowie deroperationellen Transferierbarkeit auf Datenmaterial modernerFernerkundungssensoren diskutiert.
Resumo:
In den westlichen Industrieländern ist das Mammakarzinom der häufigste bösartige Tumor der Frau. Sein weltweiter Anteil an allen Krebserkrankungen der Frau beläuft sich auf etwa 21 %. Inzwischen ist jede neunte Frau bedroht, während ihres Lebens an Brustkrebs zu erkranken. Die alterstandardisierte Mortalitätrate liegt derzeit bei knapp 27 %.rnrnDas Mammakarzinom hat eine relative geringe Wachstumsrate. Die Existenz eines diagnostischen Verfahrens, mit dem alle Mammakarzinome unter 10 mm Durchmesser erkannt und entfernt werden, würden den Tod durch Brustkrebs praktisch beseitigen. Denn die 20-Jahres-Überlebungsrate bei Erkrankung durch initiale Karzinome der Größe 5 bis 10 mm liegt mit über 95 % sehr hoch.rnrnMit der Kontrastmittel gestützten Bildgebung durch die MRT steht eine relativ junge Untersuchungsmethode zur Verfügung, die sensitiv genug zur Erkennung von Karzinomen ab einer Größe von 3 mm Durchmesser ist. Die diagnostische Methodik ist jedoch komplex, fehleranfällig, erfordert eine lange Einarbeitungszeit und somit viel Erfahrung des Radiologen.rnrnEine Computer unterstützte Diagnosesoftware kann die Qualität einer solch komplexen Diagnose erhöhen oder zumindest den Prozess beschleunigen. Das Ziel dieser Arbeit ist die Entwicklung einer vollautomatischen Diagnose Software, die als Zweitmeinungssystem eingesetzt werden kann. Meines Wissens existiert eine solche komplette Software bis heute nicht.rnrnDie Software führt eine Kette von verschiedenen Bildverarbeitungsschritten aus, die dem Vorgehen des Radiologen nachgeahmt wurden. Als Ergebnis wird eine selbstständige Diagnose für jede gefundene Läsion erstellt: Zuerst eleminiert eine 3d Bildregistrierung Bewegungsartefakte als Vorverarbeitungsschritt, um die Bildqualität der nachfolgenden Verarbeitungsschritte zu verbessern. Jedes kontrastanreichernde Objekt wird durch eine regelbasierte Segmentierung mit adaptiven Schwellwerten detektiert. Durch die Berechnung kinetischer und morphologischer Merkmale werden die Eigenschaften der Kontrastmittelaufnahme, Form-, Rand- und Textureeigenschaften für jedes Objekt beschrieben. Abschließend werden basierend auf den erhobenen Featurevektor durch zwei trainierte neuronale Netze jedes Objekt in zusätzliche Funde oder in gut- oder bösartige Läsionen klassifiziert.rnrnDie Leistungsfähigkeit der Software wurde auf Bilddaten von 101 weiblichen Patientinnen getested, die 141 histologisch gesicherte Läsionen enthielten. Die Vorhersage der Gesundheit dieser Läsionen ergab eine Sensitivität von 88 % bei einer Spezifität von 72 %. Diese Werte sind den in der Literatur bekannten Vorhersagen von Expertenradiologen ähnlich. Die Vorhersagen enthielten durchschnittlich 2,5 zusätzliche bösartige Funde pro Patientin, die sich als falsch klassifizierte Artefakte herausstellten.rn
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. In this study, a new postprocessing information fusion algorithm for the extraction and representation of land-use information based on high-resolution satellite imagery is presented. This approach can produce land-use maps with sharp interregional boundaries and homogeneous regions. The proposed approach is conducted in five steps. First, a GIS layer - ATKIS data - was used to generate two coarse homogeneous regions, i.e. urban and rural areas. Second, a thematic (class) map was generated by use of a hybrid spectral classifier combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA classifier. Third, a probabilistic relaxation algorithm was performed on the thematic map, resulting in a smoothed thematic map. Fourth, edge detection and edge thinning techniques were used to generate a contour map with pixel-width interclass boundaries. Fifth, the contour map was superimposed on the thematic map by use of a region-growing algorithm with the contour map and the smoothed thematic map as two constraints. For the operation of the proposed method, a software package is developed using programming language C. This software package comprises the GML algorithm, a probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm, a fast parallel thinning algorithm, and a region-growing information fusion algorithm. The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test site. The high-resolution IRS-1C imagery was used as the principal input data.