954 resultados para IT-solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental accountability has become a major source of competitive advantage for industrial companies, because customers consider it as relevant buying criterion. However, in order to leverage their environmental responsibility, industrial suppliers have to be able to demonstrate the environmental value of their products and services, which is also the aim of Kemira, a global water chemistry company considered in this study. The aim of this thesis is to develop a tool which Kemira can use to assess the environmental value of their solutions for the customer companies in mining industry. This study answers to questions on what kinds of methods to assess environmental impacts exist, and what kind of tool could be used to assess the environmental value of Kemira’s water treatment solutions. The environmental impacts of mining activities vary greatly between different mines. Generally the major impacts include the water related issues and wastes. Energy consumption is also a significant environmental aspect. Water related issues include water consumption and impacts in water quality. There are several methods to assess environmental impacts, for example life cycle assessment, eco-efficiency tools, footprint calculations and process simulation. In addition the corresponding financial value may be estimated utilizing monetary assessment methods. Some of the industrial companies considered in the analysis of industry best practices use environmental and sustainability assessments. Based on the theoretical research and conducted interviews, an Excel based tool utilizing reference data on previous customer cases and customer specific test results was considered to be most suitable to assess the environmental value of Kemira’s solutions. The tool can be used to demonstrate the functionality of Kemira’s solutions in customers’ processes, their impacts in other process parameters and their environmental and financial aspects. In the future, the tool may be applied to fit also Kemira’s other segments, not only mining industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid economic growth in China has resulted in environmental challenges ranging from air pollution to water-related issues. Thus supporting clean technology, or cleantech, that encompasses industries that focus on alternative energy, pollution and recycling, power supplies and conservation has become one of the focal points in the Chinese economic policy for the next decade. Simultaneously, the Finnish government has initiated programs to support the internationalisation of domestic cleantech companies in an attempt to spiral the industry into one of the pillars of Finnish economic growth. This study concentrates on the conjunction of these two themes and studies the challenges faced by Finnish cleantech SMEs in the Chinese market. Consequently, the study answers the following sub questions: 1. What human and financial resource-based challenges do Finnish cleantech SMEs face in the Chinese market and what are their solutions? 2. What knowledge-based challenges do Finnish cleantech SMEs face in the Chinese market and how can these difficulties be resolved? 3. What network-based challenges do Finnish cleantech SMEs face in the Chinese market, how do they relate to the resource- and knowledge-based challenges, and how can these difficulties be resolved? This qualitative study is conducted by analysing four semi structured interviews collected from four Finnish SMEs that operate in China. The findings of the study indicate that in human resources the most important challenges are related to the hiring and retaining of employees. In contrast to extant academic literature results distinguish salary and social status as the main solutions to this challenge. Regarding financial resources it is discovered that cleantech companies enjoy a benign business environment in China and benefit from the Chinese government’s support for cleantech industry. Challenges related to knowledge resources can be grouped into categories with the most interesting knowledge flows being the stream of local market knowledge into to the foreign parent company and the outward flow of manufacturing and business practice information into the target venture. The challenge related to the first flow is gathering relevant information and the main solutions are clustering at the foreign location and hiring knowledge prior to internationalisation. Regarding the second flow the main challenge is related to intellectual property rights and the most interesting solution is the purposeful transformation of explicit knowledge into tacit knowledge. Finally, it is discovered that networks, called guanxi in China, greatly affect the business processes. Within the guanxi system there is the concept of face which was found to affect employee propensity to stay as well as, as a novel academic result, employees’ knowledge sharing intention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report are described means for indoor localization in special, challenging circum-stances in marine industry. The work has been carried out in MARIN project, where a tool based on mobile augmented reality technologies for marine industry is developed. The tool can be used for various inspection and documentation tasks and it is aimed for improving the efficiency in design and construction work by offering the possibility to visualize the newest 3D-CAD model in real environment. Indoor localization is needed to support the system in initialization of the accurate camera pose calculation and auto-matically finding the right location in the 3D-CAD model. The suitability of each indoor localization method to the specific environment and circumstances is evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biokuvainformatiikan kehittäminen – mikroskopiasta ohjelmistoratkaisuihin – sovellusesimerkkinä α2β1-integriini Kun ihmisen genomi saatiin sekvensoitua vuonna 2003, biotieteiden päätehtäväksi tuli selvittää eri geenien tehtävät, ja erilaisista biokuvantamistekniikoista tuli keskeisiä tutkimusmenetelmiä. Teknologiset kehitysaskeleet johtivat erityisesti fluoresenssipohjaisten valomikroskopiatekniikoiden suosion räjähdysmäiseen kasvuun, mutta mikroskopian tuli muuntua kvalitatiivisesta tieteestä kvantitatiiviseksi. Tämä muutos synnytti uuden tieteenalan, biokuvainformatiikan, jonka on sanottu mahdollisesti mullistavan biotieteet. Tämä väitöskirja esittelee laajan, poikkitieteellisen työkokonaisuuden biokuvainformatiikan alalta. Väitöskirjan ensimmäinen tavoite oli kehittää protokollia elävien solujen neliulotteiseen konfokaalimikroskopiaan, joka oli yksi nopeimmin kasvavista biokuvantamismenetelmistä. Ihmisen kollageenireseptori α2β1-integriini, joka on tärkeä molekyyli monissa fysiologisissa ja patologisissa prosesseissa, oli sovellusesimerkkinä. Työssä saavutettiin selkeitä visualisointeja integriinien liikkeistä, yhteenkeräytymisestä ja solun sisään siirtymisestä, mutta työkaluja kuvainformaation kvantitatiiviseen analysointiin ei ollut. Väitöskirjan toiseksi tavoitteeksi tulikin tällaiseen analysointiin soveltuvan tietokoneohjelmiston kehittäminen. Samaan aikaan syntyi biokuvainformatiikka, ja kipeimmin uudella alalla kaivattiin erikoistuneita tietokoneohjelmistoja. Tämän väitöskirjatyön tärkeimmäksi tulokseksi muodostui näin ollen BioImageXD, uudenlainen avoimen lähdekoodin ohjelmisto moniulotteisten biokuvien visualisointiin, prosessointiin ja analysointiin. BioImageXD kasvoi yhdeksi alansa suurimmista ja monipuolisimmista. Se julkaistiin Nature Methods -lehden biokuvainformatiikkaa käsittelevässä erikoisnumerossa, ja siitä tuli tunnettu ja laajalti käytetty. Väitöskirjan kolmas tavoite oli soveltaa kehitettyjä menetelmiä johonkin käytännönläheisempään. Tehtiin keinotekoisia piidioksidinanopartikkeleita, joissa oli "osoitelappuina" α2β1-integriinin tunnistavia vasta-aineita. BioImageXD:n avulla osoitettiin, että nanopartikkeleilla on potentiaalia lääkkeiden täsmäohjaussovelluksissa. Tämän väitöskirjatyön yksi perimmäinen tavoite oli edistää uutta ja tuntematonta biokuvainformatiikan tieteenalaa, ja tämä tavoite saavutettiin erityisesti BioImageXD:n ja sen lukuisten julkaistujen sovellusten kautta. Väitöskirjatyöllä on merkittävää potentiaalia tulevaisuudessa, mutta biokuvainformatiikalla on vakavia haasteita. Ala on liian monimutkainen keskimääräisen biolääketieteen tutkijan hallittavaksi, ja alan keskeisin elementti, avoimen lähdekoodin ohjelmistokehitystyö, on aliarvostettu. Näihin seikkoihin tarvitaan useita parannuksia,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Can crowdsourcing solutions serve many masters? Can they be beneficial for both, for the layman or native speakers of minority languages on the one hand and serious linguistic research on the other? How did an infrastructure that was designed to support linguistics turn out to be a solution for raising awareness of native languages? Since 2012 the National Library of Finland has been developing the Digitisation Project for Kindred Languages, in which the key objective is to support a culture of openness and interaction in linguistic research, but also to promote crowdsourcing as a tool for participation of the language community in research. In the course of the project, over 1,200 monographs and nearly 111,000 pages of newspapers in Finno-Ugric languages will be digitised and made available in the Fenno-Ugrica digital collection. This material was published in the Soviet Union in the 1920s and 1930s, and users have had only sporadic access to the material. The publication of open-access and searchable materials from this period is a goldmine for researchers. Historians, social scientists and laymen with an interest in specific local publications can now find text materials pertinent to their studies. The linguistically-oriented population can also find writings to delight them: (1) lexical items specific to a given publication, and (2) orthographically-documented specifics of phonetics. In addition to the open access collection, we developed an open source code OCR editor that enables the editing of machine-encoded text for the benefit of linguistic research. This tool was necessary since these rare and peripheral prints often include already archaic characters, which are neglected by modern OCR software developers but belong to the historical context of kindred languages, and are thus an essential part of the linguistic heritage. When modelling the OCR editor, it was essential to consider both the needs of researchers and the capabilities of lay citizens, and to have them participate in the planning and execution of the project from the very beginning. By implementing the feedback iteratively from both groups, it was possible to transform the requested changes as tools for research that not only supported the work of linguistics but also encouraged the citizen scientists to face the challenge and work with the crowdsourcing tools for the benefit of research. This presentation will not only deal with the technical aspects, developments and achievements of the infrastructure but will highlight the way in which user groups, researchers and lay citizens were engaged in a process as an active and communicative group of users and how their contributions were made to mutual benefit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria remains the most prevalent and devastating parasitic disease worldwide. Vaccination is considered to be an approach that will complement other strategies for prevention and control of the disease in the future. In the last 10 years, intense studies aimed at the development of a malaria vaccine have provided important knowledge of the nature of the host immunological mechanisms of protection and their respective target antigens. It became well established that protective immune responses can be generated against the distinct stages of Plasmodium. However, in general, protective immune responses are directed at stage-specific antigens. The elucidation of the primary structure of these antigens made possible the generation of synthetic and recombinant proteins that are being extensively used in experimental immunizations against the infection. Today, several epitopes of limited polymorphism have been described and protective immunity can be generated by immunization with them. These epitopes are being tested as primary candidates for a subunit vaccine against malaria. Here we critically review the major roadblocks for the development of a malaria vaccine and provide some insight on how these problems are being solved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, stepwise titration with hydrochloric acid was used to obtain chemical reactivities and dissolution rates of ground limestones and dolostones of varying geological backgrounds (sedimentary, metamorphic or magmatic). Two different ways of conducting the calculations were used: 1) a first order mathematical model was used to calculate extrapolated initial reactivities (and dissolution rates) at pH 4, and 2) a second order mathematical model was used to acquire integrated mean specific chemical reaction constants (and dissolution rates) at pH 5. The calculations of the reactivities and dissolution rates were based on rate of change of pH and particle size distributions of the sample powders obtained by laser diffraction. The initial dissolution rates at pH 4 were repeatedly higher than previously reported literature values, whereas the dissolution rates at pH 5 were consistent with former observations. Reactivities and dissolution rates varied substantially for dolostones, whereas for limestones and calcareous rocks, the variation can be primarily explained by relatively large sample standard deviations. A list of the dolostone samples in a decreasing order of initial reactivity at pH 4 is: 1) metamorphic dolostones with calcite/dolomite ratio higher than about 6% 2) sedimentary dolostones without calcite 3) metamorphic dolostones with calcite/dolomite ratio lower than about 6% The reactivities and dissolution rates were accompanied by a wide range of experimental techniques to characterise the samples, to reveal how different rocks changed during the dissolution process, and to find out which factors had an influence on their chemical reactivities. An emphasis was put on chemical and morphological changes taking place at the surfaces of the particles via X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Supporting chemical information was obtained with X-Ray Fluorescence (XRF) measurements of the samples, and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) measurements of the solutions used in the reactivity experiments. Information on mineral (modal) compositions and their occurrence was provided by X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDX) and studying thin sections with a petrographic microscope. BET (Brunauer, Emmet, Teller) surface areas were determined from nitrogen physisorption data. Factors increasing chemical reactivity of dolostones and calcareous rocks were found to be sedimentary origin, higher calcite concentration and smaller quartz concentration. Also, it is assumed that finer grain size and larger BET surface areas increase the reactivity although no certain correlation was found in this thesis. Atomic concentrations did not correlate with the reactivities. Sedimentary dolostones, unlike metamorphic ones, were found to have porous surface structures after dissolution. In addition, conventional (XPS) and synchrotron based (HRXPS) X-ray Photoelectron Spectroscopy were used to study bonding environments on calcite and dolomite surfaces. Both samples are insulators, which is why neutralisation measures such as electron flood gun and a conductive mask were used. Surface core level shifts of 0.7 ± 0.1 eV for Ca 2p spectrum of calcite and 0.75 ± 0.05 eV for Mg 2p and Ca 3s spectra of dolomite were obtained. Some satellite features of Ca 2p, C 1s and O 1s spectra have been suggested to be bulk plasmons. The origin of carbide bonds was suggested to be beam assisted interaction with hydrocarbons found on the surface. The results presented in this thesis are of particular importance for choosing raw materials for wet Flue Gas Desulphurisation (FGD) and construction industry. Wet FGD benefits from high reactivity, whereas construction industry can take advantage of slow reactivity of carbonate rocks often used in the facades of fine buildings. Information on chemical bonding environments may help to create more accurate models for water-rock interactions of carbonates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to evaluate the osmotic dehydration of sweet potato (Ipomoea batatas) using hypertonic sucrose solutions, with or without NaCl, at three different concentrations, at 40 °C. Highest water losses were obtained when the mixture of sucrose and NaCl was used. The addition of NaCl to osmotic solutions increases the driving force of the process and it is verified that the osmotic dehydration process is mainly influenced by changes in NaCl concentration, but the positive effect of the salt-sucrose interaction on soluble solids also determined the decrease of solid gain when solutes were at maximum concentrations. Mass transfer kinetics were modeled according to Peleg, Fick and Page's equations, which presented good fittings of the experimental data. Peleg's equation and Page's model presented the best fitting and showed excellent predictive capacity for water loss and salt gain data. The effective diffusivity determined using Fick's Second Law applied to slice geometry was found to be in the range from 3.82 x 10-11 to 7.46 x 10-11 m²/s for water loss and from 1.18 x 10-10 to 3.38 x 10-11 m²/s for solid gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of depth sensors has made it possible to track – not only monocular cues – but also the actual depth values of the environment. This is especially useful in augmented reality solutions, where the position and orientation (pose) of the observer need to be accurately determined. This allows virtual objects to be installed to the view of the user through, for example, a screen of a tablet or augmented reality glasses (e.g. Google glass, etc.). Although the early 3D sensors have been physically quite large, the size of these sensors is decreasing, and possibly – eventually – a 3D sensor could be embedded – for example – to augmented reality glasses. The wider subject area considered in this review is 3D SLAM methods, which take advantage of the 3D information available by modern RGB-D sensors, such as Microsoft Kinect. Thus the review for SLAM (Simultaneous Localization and Mapping) and 3D tracking in augmented reality is a timely subject. We also try to find out the limitations and possibilities of different tracking methods, and how they should be improved, in order to allow efficient integration of the methods to the augmented reality solutions of the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to examine efficiency of freeze crystallization and eutectic freeze crystallization in purification of wastewater by imitating natural freezing. In addition, a mathematic model based on heat transfer to determine ice thickness and ice growth rate was examined. Also, the amount of sodium sulfate crystallized at the eutectic point was under investigation. In literature part, advantages and applications of the freeze crystallization are discussed, and possibility to apply it in Northern hemisphere winter weather conditions is under study. Furthermore, main sources of sodium sulfate from Finnish industries are described. The experiments were carried out in modified chest freezer, where a fan was placed in order to obtain laminar air flow inside. Picolog PT-104 data logger was used to monitor temperature changes in the salt-water solution, and constant temperature was maintained in the crystallizer with Lauda RP 850 thermostat. The impurity of formed ice layer was determined by weighing ice samples after experiment and again after 24 hours drying to full dryness in oven. Volume of salt-water solution was also measured after experiment. The highest purity of formed ice layer was obtained with small temperature difference and with long freezing time. On the other hand, the amount of crystallized sodium sulfate was its greatest with long freezing time and higher temperature difference. The results obtained by the mathematic model and empirical results did not differ significantly in most of the experiments. However, the difference increased when salt-water mixture reached its eutectic point, leading to simultaneous ice and salt crystallization. Eutectic point was reached only with the highest salt concentration with one exception. In these cases, calculated values were in many cases greater than the experimental ones. In winter weather conditions freeze crystallization is cost-effective wastewater treatment method and rather simple. Nonetheless, the efficiency and separation rate are strongly depended on ambient temperature and its changes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this Master’s thesis focused on the oxidation of sodium thiosulfate using non thermal plasma technology as an advance oxidation process (AOP). By using this technology we can degrade certain toxic chemical compounds present in mining wastewaters as pollutants. Different concentrations of thiosulfate and pulse frequencies were used in the PCD experiments and the results in terms of various delivered energies (kWh/m3) and degradation kinetics were compared. Pulsed corona discharge is an energy efficient process compared to other oxidation processes using for the treatment of waste water pollutants. Due to its simplicity and low energy costs make it attractive in the field of waste water treatment processes. This technology of wastewater treatment has been tested mainly on pilot scale level and in future the attempts are to be focus on PCD investigations on larger process scale. In this research work of oxidation of thiosulfate using pulsed corona discharge, the main aim of this research was to study degradation of a studied toxic and not environmental friendly chemical compound. The focus of this research was to study the waste waters coming from the gold mines containing leachate compound thiosulfate. Literature review contained also gold leaching process when cyanide is used as the leachate. Another objective of this work was to compare PCD process with other processes based on their energy efficiencies. In the experimental part two concentrations of sodium thiosulfate, 1000ppm and 400ppm, were used. Two pulse generator frequencies of 833 and 200 pulses per second (pps) were used. The chemical analyses of the samples taken during semi-batch PCD oxidation process were analyzed by ion chromatographic (IC). It is observed after the analyses that among different frequencies and concentrations, the most suitable ones for the process is 200pps and 1000ppm respectively because the pollutants present in the waste water has more time to react with the OH radicals which are the oxidants and the process is energy efficient compared to other frequencies.