899 resultados para IMMERSION
Resumo:
Water may influence the mechanical properties of the acrylic resins. Thus, the effect of water storage on the impact strength (IS) of one denture base (Lucitone 550 - L) and four reline resins (Tokuyama Rebase II - T; UfiGel Hard - U; Kooliner - K; New Truliner - NT) was evaluated. Bars of L were made (60 x 6 x 2 mm) and relined (2 mm) with T, U, K, NT and L. Intact specimens of each material (60 x 6 x 4 mm) were also fabricated for comparative purposes. Specimens were submitted to Charpy impact tests without water storage (control) and after immersion in water for 7, 90 and 180 days. Data (kJ/m 2) analyzed by two-way ANOVA and Tukey's test (p=0.05) revealed that after 90 days, U exhibited an increase in the IS (0.93) compared to 7 days (0.58). K (1.48) and L/K (7.21) exhibited a decrease at the 7-day period (1.01 and 3.23, respectively). NT (0.60) showed an increase in the IS after 180 days (1.52), whereas L/ NT (7.70) showed a decrease (3.17). Water immersion improved the IS of U and NT, and decreased the IS of K, L/K, and L/NT. Water may affect differently the IS of acrylic resins and, consequently, the resistance to fracture of relined denture bases.
Resumo:
Coloring in drinks decreases the color stability of composite restorations, reducing their longevity. The purpose of this in vitro study was to evaluate the effect of immersion media on color stability of seven different composite resins (Solidex - Shofu, Resilab-Wilcos, Signum - Heraeus, Epricord - Tokuyama, Adoro - Ivoclar Vivadent, Admira - Voco and Sinfony - 3MESPE). Seven resin-based composite specimens were prepared using a cylindrical teflon mold 2 mm thick and 10 mm in diameter Fifteen specimens of each resin were light-cured according to manufacturers' instructions and randomized into 3 groups (n= 5) according to immersion media: coffee, cola beverage and water A digital spectrophotometer Easy Shade (VITA) was used to evaluate the color changes at baseline and 7 days after immersion in each solution. Specimens were stored in the different staining media for 24 h/day during one week. The color differences were analyzed by two-way ANOVA and Tukey 's test (p< 0.05). Color change was observed after one week of immersion and there were statistical differences in staining, composite and interaction factors. The least staining was observed in Admira (deltaE= 3.934+/-0.814) and Resilab (deltaE= 3.993+/-0.735), followed by Adoro (deltaE= 4.044+/-1.001), Epri-cord (deltaE= 4.049+/-1.234), Signum (deltaE= 4.260+/-1.785), Solidex (deltaE=5,122+/-0.534) and Sinfony (deltaE=5.126+/-0.838). All of the composites tested except Adoro were susceptible to staining by substances present in coffee and cola, when stored in beverage for seven days. The lowest deltaE means were obtained with Admira.
Resumo:
The aim of this study was to investigate the effects of some acidic drinks on dentin erosion, using methods of surface profile (SP) analysis and energy-dispersive X-ray fluorescence spectrometry (EDXRF). One hundred standardized dentin slabs obtained from bovine incisor roots were used. Dentin slabs measuring 5x5 mm were ground flat, polished and half of each specimen surface was protected with nail polish. For 60 min, the dentin surfaces were immersed in 50 mL of 5 different drinks (Gatorade®, Del Valle Mais orange juice®, Coca-Cola®, Red Bull® and white wine), 20 blocks in each drink. The pH of each beverage was measured. After the erosive challenge, the nail polish was removed and SP was analyzed. The mineral concentration of dentin surfaces was determined by means of EDXRF. Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). SP analysis showed that Red-Bull had the highest erosive potential (p<0.05). EDXRF results exhibited a decrease in phosphate in the groups immersed in Red-Bull, orange juice and white wine (p<0.05), and no significant difference in calcium content between the reference surface and eroded surface. In conclusion, this study demonstrated that all studied beverages promoted erosion on root dentin and Red Bull had the highest erosive potential. There was no correlation between pH of beverages and their erosive potential and only the P content changed after erosive challenge.
Resumo:
The aim of the present study was to assess the shear bond strength between a heat-polymerized denture base resin and acrylic resin teeth after immersion in different denture cleansers by simulating a 180-day use. Two acrylic teeth (Biotone, Biotone IPN, Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil) were chosen for bonding to a heat-polymerized denture base resin (Lucitone 550- Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil). Eighty specimens were produced and divided into eight groups (n=10) according to their experimental condition (distilled water, 2% chlorhexidine digluconate, 1% sodium hypochlorite and Corega Tabs). Shear bond strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Student-Newman-Keuls' multiple comparisons post hoc analysis (α=.05). The shear bond strength results revealed statistically significant differences between the groups. For the Biotone IPN tooth, significantly lower shear bond strength values were found for the group immersed in sodium-perborate solution (4.48±2.18 MPa) than for the group immersed in distilled water (control group) (10.83±1.84 MPa). For Biotone, significantly higher bond strength values (10.04±3.28 MPa) were found for the group immersed in Corega Tabs than for the control group (5.45±2.93 MPa). The immersion in denture cleanser solutions was more detrimental to the conventional acrylic denture tooth (Biotone) than to the highly cross-linked denture tooth (Biotone IPN). However, this effect was not observed for the groups immersed in Corega Tabs solution, regardless of the type of denture tooth. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Countries have different official programs and implement different sampling methods for the detection of Salmonella on poultry carcasses. In Brazil, a 25-g sample of skin and muscle excision (SME) from the wings, neck, and pericloacal parts is used; in the European Union (EU), a 25-g sample of neck skin (NSE) is used; and, in the United States, the whole carcass is rinsed with 400 ml of diluent (WCR). In the present study, these methods were evaluated to compare Salmonella occurrence and counts of hygiene indicator microorganisms (Escherichia coli, Enterobacteriaceae, and total viable count of aerobic mesophilic bacteria) using different carcasses from the same flock and also using different analytical units taken from the same carcass. Eighty flocks, with four broiler carcasses from each, were included in this study; three broilers were sampled according to protocols from Brazil, the EU, and the United States, and the last one by all three methods. SME, NSE, and WCR provided equivalent results (P > 0.05) for Salmonella detection on broiler carcasses when using different carcasses from the same flock and when using the same carcass. The predominant serovar was Salmonella Enteritidis. For the enumeration of hygiene indicator microorganisms, WRC provided higher counts than SME or NSE (P < 0.05), when using both the same or different carcasses. Therefore, it is possible to directly compare Salmonella results in poultry carcasses when using the methods recommended by the legislative bodies of Brazil, the United States, and the EU. However, WCR provides the best results for hygiene indicator microorganisms. Copyright © International Association for Food Protection.
Resumo:
Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.
Resumo:
Plasma immersion ion implantation (PIII) process is a three dimensional surface modification method that is quite mature and well known to the surface engineering community nowadays, especially to those working in the field of plasma-materials interaction, aiming at both industrial and academic applications. More recently, deposition methods have been added to PIII, the PIII&D, opening possibilities of broader range of applications of these techniques. So, PIII&D is becoming a routine method of surface modification, with the advantage of pushing up the retained dose levels limited by the sputtering due to ion implantation. Therefore, well adherent, thick, three-dimensional films without stress are possible to be achieved, at relatively low cost, using PIII&D. In this paper, we will discuss about a few PIII and PIII&D experiments that have been performed recently to achieve surface improvements in different materials: 1 - high temperature nitrogen PIII in Ti6Al4V alloy in which a deep nitrogen rich treated layer resulted in surface improvements as increase of hardness, corrosion resistance and resistance to wear of the Ti alloy; 2 - nanostructures in ZnO films, obtained by PIII&D of vaporized & ionized Zn source; 3 - combined implantation and deposition of calcium for biomaterial activity of Ti alloy (PIII&D), allowing the growth of hydroxyapatite in a body solution; 4 - magnetron sputtering deposition of Cr that was enhanced by the glow discharge Ar plasma to allow implantation and deposition of Cr on SAE 1070 steel (PIII&D) resulting in surfaces with high resistance to corrosion; and 5 - implantation of nitrogen by ordinary PIII into this Cr film, which improved resistance to corrosion, while keeping the tribological properties as good as for the SAE 1070 steel surface. © 2012 Elsevier B.V.
Resumo:
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A significant increase of surface hydrophilicity of copper and gold surfaces was obtained after atmospheric pressure plasma treatment using the surface dielectric barrier discharge with specific electrode geometry, the so-called diffuse coplanar surface barrier discharge. Surface wettability was estimated using the sessile drop method with further calculation of the surface free energy. After the plasma treatments, it was observed that the treated surfaces exhibited hydrophobic recovery (or aging effect). The aging effect was studied in different storage environments, such as air, low and high vacuum. The role of plasma and the reasons of the following aging effect are discussed with respect to the observed hydrophilic recovery after immersing the aged surfaces into deionized water. The changes in the surface morphology, composition and bond structure are presented and discussed as well. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
A comparison between experimental measurements and numerical calculations of the ion current distribution in plasma immersion ion implantation (PIII) with external magnetic field is presented. Later, Silicon samples were implanted with nitrogen ion to analyze the effect on them. The magnetic field considered is essentially non-uniform and is generated by two magnetic coils installed on vacuum chamber. The presence of both, electric and magnetic field in PIII create a crossed ExB field system, promoting drift velocity of the plasma around the target. The results found shows that magnetized electrons drifting in ExB field provide electron-neutral collision. The efficient ionization increases the plasma density around the target where a magnetic confinement is formed. As result, the ion current density increases, promoting significant changes in the samples surface properties, especially in the surface wettability.
Resumo:
Amorphous silicon carbonitride (a-SiCN:H) films were deposited from hexamethyldisilazane (HMDSN) organic compounds via radio-frequency (RF) glow discharges. Afterwards the films were bombarded, from 15 to 60 min, with nitrogen ions using Plasma Immersion Ion Implantation (PIII) technique. X-ray photoelectron spectroscopy (XPS) showed that O-containing groups increased, while C-C and/or C-H groups decreased with treatment time. This result indicates chemical alterations of the polymeric films with the introduction of polar groups on the surface, which changes the surface wettability. In fact, the hydrophobic nature of a-SiCN:H films (contact angle of 100 degrees) was changed by nitrogen ion implantation and, and after aging in atmosphere air, all samples preserved the hydrophilic character (contact angle <80 degrees) independently of treatment time. The exposure of the films to oxygen plasma was performed to evaluate the etching rate, which dropped from 24% to 6% while the implantation time increased from 15 to 60 min. This data suggests that Pill increased the film structure strength, probably due to crosslinking enhancement of polymeric chains. Therefore, the treatment with nitrogen ions via Pill process was effective to modify the wettability and oxidation resistance of a-SiCN:H films. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The study evaluated the influence of light curing units and immersion media on superficial roughness and microhardness of the nanofilled composite resin Supreme XT (3M/ESPE). Light curing units used were: XL 3000 (3M/ESPE), Jet Lite 4000 Plus (JMorita) and Ultralume Led 5 (Ultradent) and immersion media were artificial saliva, Coke®, tea and coffee, totaling 12 experimental groups. Specimens (10mm x 2mm) were immersed in each respective solution for 5 seconds, three times a day, during 60 days and so, were submitted to measure of superficial roughness (Ra) and Vickers hardness. Data were subjected to two-way ANOVA test (p<0.05). Results showed that only the light source factor showed statistically difference for hardness. It was observed that the hardness of the composite resin Filtek Supreme XT (3M/ESPE) was influenced by the light source (p<0.01) independently of the immersion media (p= 0.35) and the Jet Lite 4000 Plus (JMorita) was the light curing unit that presented lower values. In relation to surface roughness, it was noted no-significant statistical difference for light source (p=0.84), when specimens were immersed in different beverages (p=0.35).
Resumo:
Aims: The study evaluated the influence of light curing units and immersionmedia on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M)through the EDX analysis and SEM evaluation. Light curing units with different power densitiesand mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), andUltralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke1, tea and coffee,totaling 12 experimental groups. Specimens (10 mm 3 2 mm) were immersed in each respectivesolution for 5 min, three times a day, during 60 days and stored in artificial saliva at 378C 6 18Cbetween immersion periods. Topography and chemical analysis was qualitative. Findings: Groupsimmersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calciumat the material surface. Regarding coffee, there was a reasonable chemical degradation with loss ofload particles and deposition of ions. For tea, superficial degradation occurred in specific areaswith deposition of calcium, carbon, potassium and phosphorus. For Coke1, excessive matrix degra-dation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion:Light curing units did not influence the superficial morphology of composite resin tested, but theimmersion beverages did. Coke1affected material’s surface more than did the other tested drinks.Microsc. Res. Tech. 73:176–181, 2010.