911 resultados para IMAGE RETRIEVAL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Questo studio si propone di realizzare un’applicazione per dispositivi Android che permetta, per mezzo di un gioco di ruolo strutturato come caccia al tesoro, di visitare in prima persona città d’arte e luoghi turistici. Gli utenti finali, grazie alle funzionalità dell’app stessa, potranno giocare, creare e condividere cacce al tesoro basate sulla ricerca di edifici, monumenti, luoghi di rilevanza artistico-storica o turistica; in particolare al fine di completare ciascuna tappa di una caccia al tesoro il giocatore dovrà scattare una fotografia al monumento o edificio descritto nell’obiettivo della caccia stessa. Il software grazie ai dati rilevati tramite GPS e giroscopio (qualora il dispositivo ne sia dotato) e per mezzo di un algoritmo di instance recognition sarà in grado di affermare se la foto scattata rappresenta la risposta corretta al quesito della tappa. L’applicazione GeoPhotoHunt rappresenta non solo uno strumento ludico per la visita di città turistiche o più in generale luoghi di interesse, lo studio propone, infatti come suo contributo originale, l’implementazione su piattaforma mobile di un Content Based Image Retrieval System (CBIR) del tutto indipendente da un supporto server. Nello specifico il server dell’applicazione non sarà altro che uno strumento di appoggio con il quale i membri della “community” di GeoPhotoHunt potranno pubblicare le cacce al tesoro da loro create e condividere i punteggi che hanno totalizzato partecipando a una caccia al tesoro. In questo modo quando un utente ha scaricato sul proprio smartphone i dati di una caccia al tesoro potrà iniziare l’avventura anche in assenza di una connessione internet. L’intero studio è stato suddiviso in più fasi, ognuna di queste corrisponde ad una specifica sezione dell’elaborato che segue. In primo luogo si sono effettuate delle ricerche, soprattutto nel web, con lo scopo di individuare altre applicazioni che implementano l’idea della caccia al tesoro su piattaforma mobile o applicazioni che implementassero algoritmi di instance recognition direttamente su smartphone. In secondo luogo si è ricercato in letteratura quali fossero gli algoritmi di riconoscimento di immagini più largamente diffusi e studiati in modo da avere una panoramica dei metodi da testare per poi fare la scelta dell’algoritmo più adatto al caso di studio. Quindi si è proceduto con lo sviluppo dell’applicazione GeoPhotoHunt stessa, sia per quanto riguarda l’app front-end per dispositivi Android sia la parte back-end server. Infine si è passati ad una fase di test di algoritmi di riconoscimento di immagini in modo di avere una sufficiente quantità di dati sperimentali da permettere di effettuare una scelta dell’algoritmo più adatto al caso di studio. Al termine della fase di testing si è deciso di implementare su Android un algoritmo basato sulla distanza tra istogrammi di colore costruiti sulla scala cromatica HSV, questo metodo pur non essendo robusto in presenza di variazioni di luminosità e contrasto, rappresenta un buon compromesso tra prestazioni, complessità computazionale in modo da rendere la user experience quanto più coinvolgente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Questa tesi si inserisce in un progetto di ricerca fra il gruppo di Matematica della Visione del Prof. Ferri e CA-MI S.r.l. volto a progettare un sistema di recupero di immagini mediante il quale un dermatologo potrà acquisire l’immagine di una lesione e recuperare da un database classificato le immagini più somiglianti. Il concetto stesso di “somiglianza” è formalmente realizzato da una parte dell’omologia persistente (funzioni di taglia). Questa tesi utilizza tali metodi al fine di ottenere una combinazione ottimale dei diversi classificatori che si ottengono utilizzando la modularità intrinseca nella teoria. A questo scopo vengono impiegati due modelli e diversi metodi numerici.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A imagem mental e a memória visual têm sido consideradas como componentes distintos na codificação da informação, e associados a processos diferentes da memória de trabalho. Evidências experimentais mostram, por exemplo, que o desempenho em tarefas de memória baseadas na geração de imagem mentais (imaginação visual) sofre a interferência do ruído visual dinâmico (RVD), mas não se observa o mesmo efeito em tarefas de memória visual baseadas na percepção visual (memória visual). Embora várias evidências mostrem que tarefas de imaginação e de memória visual sejam baseadas em processos cognitivos diferentes, isso não descarta a possibilidade de utilizarem também processos em comum e que alguns resultados experimentais que apontam diferenças entre as duas tarefas resultem de diferenças metodológicas entre os paradigmas utilizados para estuda-las. Nosso objetivo foi equiparar as tarefas de imagem mental visual e memória visual por meio de tarefas de reconhecimento, com o paradigma de dicas retroativas espaciais. Sequências de letras romanas na forma visual (tarefa de memória visual) e acústicas (tarefa de imagem mental visual) foram apresentadas em quatro localizações espaciais diferentes. No primeiro e segundo experimento analisou-se o tempo do curso de recuperação tanto para o processo de imagem quanto para o processo de memória. No terceiro experimento, comparou-se a estrutura das representações dos dois componentes, por meio da apresentação do RVD durante a etapa de geração e recuperação. Nossos resultados mostram que não há diferenças no armazenamento da informação visual durante o período proposto, porém o RVD afeta a eficiência do processo de recuperação, isto é o tempo de resposta, sendo a representação da imagem mental visual mais suscetível ao ruído. No entanto, o processo temporal da recuperação é diferente para os dois componentes, principalmente para imaginação que requer mais tempo para recuperar a informação do que a memória. Os dados corroboram a relevância do paradigma de dicas retroativas que indica que a atenção espacial é requisitada em representações de organização espacial, independente se são visualizadas ou imaginadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index image's multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partition's center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images have similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the dimensionality curse existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms image's text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partition's center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. To effectively integrate multi-features, we also investigated the following evidence combination techniques-Certainty Factor, Dempster Shafer Theory, Compound Probability, and Linear Combination. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude. And Certainty Factor and Dempster Shafer Theory perform best in combining multiple similarities from corresponding multiple features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we study some of the characteristics of the art painting image color semantics. We analyze the color features of differ- ent artists and art movements. The analysis includes exploration of hue, saturation and luminance. We also use quartile’s analysis to obtain the dis- tribution of the dispersion of defined groups of paintings and measure the degree of purity for these groups. A special software system “Art Paint- ing Image Color Semantics” (APICSS) for image analysis and retrieval was created. The obtained result can be used for automatic classification of art paintings in image retrieval systems, where the indexing is based on color characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

В статье рассмотрена проблема семантической разницы между содержимым мультимедиа и его текстовым описанием, определяемым вручную. Предложен комбинированный подход к представлению семантики мультимедиа, основанный на объединении близких по содержанию и текстовому описанию мультимедиа в классы, содержащие обобщённые описания объектов, связей между ними и ключевых слов текстовых метаданных из некоторого тезауруса. Для формирования этих классов используются операции иерархической кластеризации и машинного обучения. Данный подход позволяет расширить область поиска и навигации мультимедиа благодаря привлечению медиа-данных, имеющих схожее содержание и текстовое описание.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Access to Digital Cultural Heritage: Innovative Applications of Automated Metadata Generation Edited by: Krassimira Ivanova, Milena Dobreva, Peter Stanchev, George Totkov Authors (in order of appearance): Krassimira Ivanova, Peter Stanchev, George Totkov, Kalina Sotirova, Juliana Peneva, Stanislav Ivanov, Rositza Doneva, Emil Hadjikolev, George Vragov, Elena Somova, Evgenia Velikova, Iliya Mitov, Koen Vanhoof, Benoit Depaire, Dimitar Blagoev Reviewer: Prof., Dr. Avram Eskenazi Published by: Plovdiv University Publishing House "Paisii Hilendarski" ISBN: 978-954-423-722-6 2012, Plovdiv, Bulgaria First Edition

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents the principal results of the Ph.D. thesis A Novel Method for Content-Based Image Retrieval in Art Image Collections Utilizing Colour Semantics by Krassimira Ivanova (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt Uni-versity in Belgium, Faculty of Science, on 15 November 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider the task of recognizing epigraphs in images such as photos taken using mobile devices. Given a set of 17,155 photos related to 14,560 epigraphs, we used a k-NearestNeighbor approach in order to perform the recognition. The contribution of this work is in evaluating state-of-the-art visual object recognition techniques in this specific context. The experimental results conducted show that Vector of Locally Aggregated Descriptors obtained aggregating SIFT descriptors is the best choice for this task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.4.9, I.4.10.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The content-based image retrieval is important for various purposes like disease diagnoses from computerized tomography, for example. The relevance, social and economic of image retrieval systems has created the necessity of its improvement. Within this context, the content-based image retrieval systems are composed of two stages, the feature extraction and similarity measurement. The stage of similarity is still a challenge due to the wide variety of similarity measurement functions, which can be combined with the different techniques present in the recovery process and return results that aren’t always the most satisfactory. The most common functions used to measure the similarity are the Euclidean and Cosine, but some researchers have noted some limitations in these functions conventional proximity, in the step of search by similarity. For that reason, the Bregman divergences (Kullback Leibler and I-Generalized) have attracted the attention of researchers, due to its flexibility in the similarity analysis. Thus, the aim of this research was to conduct a comparative study over the use of Bregman divergences in relation the Euclidean and Cosine functions, in the step similarity of content-based image retrieval, checking the advantages and disadvantages of each function. For this, it was created a content-based image retrieval system in two stages: offline and online, using approaches BSM, FISM, BoVW and BoVW-SPM. With this system was created three groups of experiments using databases: Caltech101, Oxford and UK-bench. The performance of content-based image retrieval system using the different functions of similarity was tested through of evaluation measures: Mean Average Precision, normalized Discounted Cumulative Gain, precision at k, precision x recall. Finally, this study shows that the use of Bregman divergences (Kullback Leibler and Generalized) obtains better results than the Euclidean and Cosine measures with significant gains for content-based image retrieval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do Grau de Mestre em Engenharia de Redes de Comunicação e Multimédia