992 resultados para I Mass Function
Resumo:
The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, and of other patients with undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (MDA5) cause a spectrum of neuro-immunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer a gain-of-function - so that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.
Resumo:
The cerebellum floccular complex lobes (FCLs) are housed in the FCL fossa of the periotic complex. There is experimental evidence indicating that the FCLs integrate visual and vestibular information, responsible for the vestibulo-ocular reflex, vestibulo-collic reflex, smooth pursuit and gaze holding. Thus, the behavior of extinct animals has been correlated with FCLs dimension in multiple paleoneuroanatomy studies. Here I analyzed braincase endocasts of a representative sample of Mammalia (48 species) and Aves (59 species) rendered using tomography and image segmentation and tested statistical correlations between the floccular complex volume, ecological and behavioral traits to assess various previously formulated paleobiological speculations. My results demonstrate: 1) there is no significant correlation between relative FCL volume and body mass; 2) there is no significant correlation between relative FCL and optic lobes size in birds; 3) average relative FCL size is larger in diurnal than in nocturnal birds but there is no statistically significant difference in mammals; 4) feeding strategies are related with different FCL size patterns in birds, but not in mammals; 5) locomotion type is not related with relative FCL size in mammals; 6) agility is not significantly correlated with FCL size in mammals. I conclude that, despite the apparent relation between FCL size and ecology in birds, the cerebellum of tetrapods is a highly plastic structure and may be adapted to control different functions across different taxonomic levels. For example, the european mole (Talpa europaea) which is fossorial and practically blind, has a FCL fossae relative size larger than those of bats, which are highly maneuverable. Therefore, variation in FCL size may be better explained by a combination of multiple factors with relation to anatomical and phylogenetic evolutionary constraints.
Resumo:
El objetivo general de este proyecto es dilucidar los mecanismos de acción a nivel molecular de enzimas y proteínas involucradas en el metabolismo de colina en <i>Pseudomonas aeruginosai>, con énfasis en la identificación de residuos aminoacídicos críticos y regulación de la expresión de los genes en estudio. Los objetivos específicos que se palntean involucran abordajes bioquímicos y moleculares y serán llevados a cabo mediante técnicas de biología molecular y bioquímica (mutación sitio-dirigida, deleción génica, expresión y purificación de proteínas, fusión transcripcional a genes reporteros, etc). Planteo de hipótesis: las proteínas que se inducen por colina (fosforilcolina fosfatasa (PchP), fosfolipasa C (PlcH), acetilcolinestera (AchE), proteínas periplásmicas unidoras de colina (PUch) podrían compartir: a) una organización génica y responder a la regulación por proteínas regulatorias o a factores ambientales de manera similar; b) residuos aminoacídicos conservados que intervengan en la unión o interacción con diferentes ligandos, principalmente, colina. Para ello, se plantean los siguientes Objetivos Específicos: 1) identificar las zonas promotoras de los genes que codifican para PchP, PlcH, AchE y PUch, a fin de localizar posibles sitios de unión a proteínas reguladoras y los factores ambientales que afectan la actividad promotora. 2) determinar en las proteínas mencionadas los residuos aminoacídicos de importancia involucrados en la catálisis y en la interacción con ligandos, principalmente en la unión a compuestos de alquilamonio; 3) Se iniciarán estudios que demuestren la relación entre la inducción por colina de varios factores de patogenicidad la virulencia del microorganismo, empleando mutantes simples o múltiples en estos factores y como modelo de patogenicidad el nematodo <i>C. elegansi>. A partir de los resultados obtenidos se pretende tener un conocimiento profundo sobre la regulación molecular y bioquímica de varias enzimas comprometidas en la patología que produce <i>P. aeruginosai>. Esto más el conocimiento de la fisiología de este microorganismo abre el camino para la búsqueda de posibles blancos de acción de drogas. Por otro lado, se espera tener un conocimiento integral sobre la regulación de la expresión de las actividades enzimáticas relacionadas con el metabolismo de colina y la respuesta de <i>P. aeruginosai> ante la presencia de compuestos de alquilamonio utilizados como nutrientes. Se espera conocer el papel que desempeña cada uno de los sitios de unión a los diferentes ligandos para el funcionamiento y control de las enzimas mencionadas y explicar el comportamiento diferencial de las enzimas frente a distintos sustratos y otros ligandos. El conocimiento de los sitios de unión a compuestos de alquilamonio permitirá encontrar esos dominios en diferentes proteínas del género Pseudomonas y otras bacterias Gram negativas. Desde el punto de vista evolutivo, se podrá comparar la similitud de los sitios de unión a colina entre proteínas de organismos eucariotas con procariotas (ej. PUch de bacterias Gram positivas, transportadores de colina, proteína C reactiva, AchE de eucariotas contra las encontradas en bacterias del género Pseudomonas, fosfolipasas A, C o D, etc.). Este proyecto permitirá concretar al menos dos tesis doctorales (Sanchez, Otero) más varios trabajos finales de grado (tesinas) que son y serán realizados por alumnos de la carrera de Microbiología en la UNRC. Les permitirá a los doctorandos y a los alumnos de grado adquirir una formación bastante integral ya que utilizarán herramientas de la fisiología general bacteriana, de la bioquímica clásica, de la biología molecular y de la bioinformática.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.
Resumo:
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.
Resumo:
Imaging mass spectrometry (IMS) is useful for visualizing the localization of phospholipids on biological tissue surfaces creating great opportunities for IMS in lipidomic investigations. With advancements in IMS of lipids, there is a demand for large-scale tissue studies necessitating stable, efficient and well-defined sample handling procedures. Our work within this article shows the effects of different storage conditions on the phospholipid composition of sectioned tissues from mouse organs. We have taken serial sections from mouse brain, kidney and liver thaw mounted unto ITO-coated glass slides and stored them under various conditions later analyzing them at fixed time points. A global decrease in phospholipid signal intensity is shown to occur and to be a function of time and temperature. Contrary to the global decrease, oxidized phospholipid and lysophospholipid species are found to increase within 2 h and 24 h, respectively, when mounted sections are kept at ambient room conditions. Imaging experiments reveal that degradation products increase globally across the tissue. Degradation is shown to be inhibited by cold temperatures, with sample integrity maintained up to a week after storage in −80 °C freezer under N2 atmosphere. Overall, the results demonstrate a timeline of the effects of lipid degradation specific to sectioned tissues and provide several lipid species which can serve as markers of degradation. Importantly, the timeline demonstrates oxidative sample degradation begins appearing within the normal timescale of IMS sample preparation of lipids (i.e. 1-2 h) and that long-term degradation is global. Taken together, these results strengthen the notion that standardized procedures are required for phospholipid IMS of large sample sets, or in studies where many serial sections are prepared together but analyzed over time such as in 3-D IMS reconstruction experiments.
Resumo:
Key Findings • Based on body mass index (BMI) measurements, 36% of Irish over 50s are obese and a further 43% are overweight. • Based on waist circumference measurements, 52% of Irish over 50s are ‘centrally obese’, i.e., with a ‘substantially increased’ waist circumference, while a further 25% have an ‘increased’ waist circumference. • Using BMI as an indicator of obesity, a higher proportion of men (38%) are obese than women (33%); however, using waist circumference as an indicator of obesity, a higher proportion of women (56%) have a ‘substantially increased’ waist circumference than men (48%). • The prevalence of obesity in Irish men over 50 is comparable with US men over 50 (while English rates are much lower). Â Â .This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.
Resumo:
IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K(+) increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.
Resumo:
We describe the motivation, design, and implementation of the CORNISH survey, an arcsecondresolution radio continuum survey of the inner galactic plane at 5 GHz using the Very Large Array (VLA). It is a blind survey coordinated with the northern SpitzerGLIMPSE I region covering 10°
Resumo:
Intracellular glucose signalling pathways control the secretion of glucagon and insulin by pancreatic islet α- and β-cells, respectively. However, glucose also indirectly controls the secretion of these hormones through regulation of the autonomic nervous system that richly innervates this endocrine organ. Both parasympathetic and sympathetic nervous systems also impact endocrine pancreas postnatal development and plasticity in adult animals. Defects in these autonomic regulations impair β-cell mass expansion during the weaning period and β-cell mass adaptation in adult life. Both branches of the autonomic nervous system also regulate glucagon secretion. In type 2 diabetes, impaired glucose-dependent autonomic activity causes the loss of cephalic and first phases of insulin secretion, and impaired suppression of glucagon secretion in the postabsorptive phase; in diabetic patients treated with insulin, it causes a progressive failure of hypoglycaemia to trigger the secretion of glucagon and other counterregulatory hormones. Therefore, identification of the glucose-sensing cells that control the autonomic innervation of the endocrine pancreatic and insulin and glucagon secretion is an important goal of research. This is required for a better understanding of the physiological control of glucose homeostasis and its deregulation in diabetes. This review will discuss recent advances in this field of investigation.
Resumo:
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.