697 resultados para Hypertonic resuscitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action of hyperosmotic nutrient solutions on the depressive effects of carbofuran was studied on spontaneously contracting guinea pig atria. The force and frequency of contraction were recorded using an isotonic lever. Carbofuran 33.0 mu g ml(-1) produced a gradual depressive effect. The time for stabilization of the depressive effect was 6.0+/-2.3 min. After the depressive effect of carbofuran was established, NaCI, mannitol, or urea were introduced into the organ bath to increase the osmolarity of the nutrient solution to about 100 mosmol kg(-1) of water. This resulted in a reversal of the contraction force and frequency to the initial levels. The addition of the osmotic agents at the same concentrations before the addition of 33.0 mu g ml(-1) carbofuran avoided its depressive effect on guinea pig atria. (C) 1996 the Italian Pharmacological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α2-Adrenoceptor activation with moxonidine (α2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water. Angiotensin II and osmotic signals are suggested to stimulate meal-induced water intake. Therefore, in the present study we investigated the effects of bilateral injections of moxonidine into the LPBN on food deprivation-induced food intake and on meal-associated water and 0.3 M NaCl intake. Male Holtzman rats with cannulas implanted bilaterally into the LPBN were submitted to 14 or 24 h of food deprivation with water and 0.3 M NaCl available (n = 6-14). Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased meal-associated 0.3 M NaCl intake (11.4 ± 3.0 ml/120 min versus vehicle: 2.2 ± 0.9 ml/120 min), without changing food intake (11.1 ± 1.2 g/120 min versus vehicle: 11.2 ± 0.9 g/120 min) or water intake (10.2 ± 1.5 ml/120 min versus vehicle: 10.4 ± 1.2 ml/120 min) by 24 h food deprived rats. When no food was available during the test, moxonidine (0.5 nmol) into the LPBN of 24 h food-deprived rats produced no change in 0.3 M NaCl intake (1.0 ± 0.6 ml/120 min versus vehicle: 1.8 ± 1.1 ml/120 min), nor in water intake (0.2 ± 0.1 ml/120 min versus vehicle: 0.6 ± 0.3 ml/120 min). The results suggest that signals generated during a meal, like dehydration, for example, not hunger, induce hypertonic NaCl intake when moxonidine is acting in the LPBN. Thus, activation of LPBN inhibitory mechanisms seems necessary to restrain sodium intake during a meal. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Activation of GABAB receptors with baclofen into the lateral parabrachial nucleus (LPBN) induces ingestion of water and 0.3 M NaCl in fluid replete rats. However, up to now, no study has investigated the effects of baclofen injected alone or combined with GABAB receptor antagonist into the LPBN on water and 0.3 M NaCl intake in rats with increased plasma osmolarity (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used.Results: In fluid replete rats, baclofen (0.5 nmol/0.2 μl), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (14.3 ± 4.1 vs. saline: 0.2 ± 0.2 ml/210 min) and water (7.1 ± 2.9 vs. saline: 0.6 ± 0.5 ml/210 min). In cell-dehydrated rats, bilateral injections of baclofen (0.5 and 1.0 nmol/0.2 μl) into the LPBN induced an increase of 0.3 M NaCl intake (15.6 ± 5.7 and 21.5 ± 3.5 ml/210 min, respectively, vs. saline: 1.7 ± 0.8 ml/210 min) and an early inhibition of water intake (3.5 ± 1.4 and 6.7 ± 2.1 ml/150 min, respectively, vs. saline: 9.2 ± 1.4 ml/150 min). The pretreatment of the LPBN with 2-hydroxysaclofen (GABAB antagonist, 5 nmol/0.2 μl) potentiated the effect of baclofen on 0.3 M NaCl intake in the first 90 min of test and did not modify the inhibition of water intake induced by baclofen in cell-dehydrated rats. Baclofen injected into the LPBN did not affect blood pressure and heart rate.Conclusions: Thus, injection of baclofen into the LPBN in cell-dehydrated rats induced ingestion of 0.3 M NaCl and inhibition of water intake, suggesting that even in a hyperosmotic situation, the blockade of LPBN inhibitory mechanisms with baclofen is enough to drive rats to drink hypertonic NaCl, an effect independent of changes in blood pressure. © 2013 Kimura et al.; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was performed to investigate the effect of treatment with furosemide on the pressor response induced by intracerebroventricular (i.c.v.) injections of cholinergic (carbachol) and adrenergic (norepinephrine) agonists, angiotensin II (ANGII) and hypertonic saline (HS, 2 M NaCl). The changes induced by furosemide treatment on the pressor response to intravenous (i.v.) norepinephrine, ANGII and arginine vasopressin (AVP) were also studied. Rats with a stainless-steel cannula implanted into the lateral ventricle (LV) were used. Two injections of furosemide (30 mg/kg b.wt. each) were performed 12 and 1 h before the experiments. Treatment with furosemide reduced the pressor response induced by carbachol, norepinephrine and ANGII i.c.v., but no change was observed in the pressor response to i.c.v. 2 M NaCl. The pressor response to i.v. ANGII and norepinephrine, but not AVP, was also reduced after treatment with furosemide. These results show that the treatment with furosemide impairs the pressor responses induced by central or peripheral administration of adrenergic agonist or ANGII, as well as those induced by central cholinergic activation. The results suggest that the treatment with furosemide impairs central and peripheral pressor responses mediated by sympathetic activation and ANGII, but not those produced by AVP. © 1992.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Oxidative stress has been implicated in the development of peritoneal damage. The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) in a rat peritoneal infusion model. Methods: Eighteen male Wistar rats were divided in 3 groups: (i) control group; (ii) HDS group, receiving peritoneal dialysis solution (PDS); and (iii) HDS+NAC group, receiving PDS and oral NAC. Six weeks later they were evaluated for dialysate to plasma urea ratio (D/P), ratio of glucose concentration in peritoneal fluid (G1/G0), thiobarbituric acid reactive substances in plasma and urine and histology of peritoneal membrane. Results: The HDS+NAC group presented a lower increase in solute transport (D/P 0.51 +/- 0.1, and G1/GO 0.35 +/- 0.06) in comparison with the HDS group (D/P 0.67 +/- 0.1; p=0.03, and G1/G0 0.27 +/- 0.07; p=0.01). The HDS+NAC group showed lower thiobarbituric acid reactive substance concentrations compared with the HDS group. In the treated group, the peritoneal membrane presented lower thickness. Conclusions: Functional and histological peritoneal changes were significantly reduced by the treatment with NAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Early treatment in sepsis may improve outcome. The aim of this study was to evaluate how the delay in starting resuscitation influences the severity of sepsis and the treatment needed to achieve hemodynamic stability. Design: Prospective, randomized, controlled experimental study. Setting: Experimental laboratory in a university hospital. Subjects: Thirty-two anesthetized and mechanically ventilated pigs. Interventions: Pigs were randomly assigned (n = 8 per group) to a nonseptic control group or one of three groups in which fecal peritonitis (peritoneal instillation of 2 g/kg autologous feces) was induced, and a 48-hr period of protocolized resuscitation started 6 (Delta T-6 hrs), 12 (Delta T-12 hrs), or 24 (Delta T-24 hrs) hrs later. The aim of this study was to evaluate the impact of delays in resuscitation on disease severity, need for resuscitation, and the development of sepsis-associated organ and mitochondrial dysfunction. Measurements and Main Results: Any delay in starting resuscitation was associated with progressive signs of hypovolemia and increased plasma levels of interleukin-6 and tumor necrosis factor-alpha prior to resuscitation. Delaying resuscitation increased cumulative net fluid balances (2.1 +/- 0.5 mL/kg/hr, 2.8 +/- 0.7 mL/kg/hr, and 3.2 +/- 1.5 mL/kg/hr, respectively, for groups.T-6 hrs, Delta T-12 hrs, and.T-24 hrs; p < .01) and norepinephrine requirements during the 48-hr resuscitation protocol (0.02 +/- 0.04 mu g/kg/min, 0.06 +/- 0.09 mu g/kg/min, and 0.13 +/- 0.15 mu g/kg/min; p = .059), decreased maximal brain mitochondrial complex II respiration (p = .048), and tended to increase mortality (p = .08). Muscle tissue adenosine triphosphate decreased in all groups (p < .01), with lowest values at the end in groups Delta T-12 hrs and.T-24 hrs. Conclusions: Increasing the delay between sepsis initiation and resuscitation increases disease severity, need for resuscitation, and sepsis-associated brain mitochondrial dysfunction. Our results support the concept of a critical window of opportunity in sepsis resuscitation. (Crit Care Med 2012; 40:2841-2849)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Volume replacement in septic patients improves hemodynamic stability. This effect can reduce the inflammatory response. The objective of this study was to evaluate the effect of 7.5% hypertonic saline solution versus 0.9% normal saline solution for volume replacement during an inflammatory response in endotoxemic rats. METHODS: We measured cytokines (serum and gut), nitrite, and lipid peroxidation (TBARS) as indicators of oxidative stress in the gut. Rats were divided into four groups: control group (C) that did not receive lipopolysaccharide; lipopolysaccharide injection without treatment (LPS); lipopolysaccharide injection with saline treatment (LPS + S); and lipopolysaccharide injection with hypertonic saline treatment (LPS + H). Serum and intestine were collected. Measurements were taken at 1.5, 8, and 24 h after lipopolysaccharide administration. RESULTS: Of the four groups, the LPS + H group had the highest survival rate. Hypertonic saline solution treatment led to lower levels of IL-6, IL-10, nitric oxide, and thiobarbituric acid reactive substances compared to 0.9% normal saline. In addition, hypertonic saline treatment resulted in a lower mortality compared to 0.9% normal saline treatment in endotoxemic rats. Volume replacement reduced levels of inflammatory mediators in the plasma and gut. CONCLUSION: Hypertonic saline treatment reduced mortality and lowered levels of inflammatory mediators in endotoxemic rats. Hypertonic saline also has the advantage of requiring less volume replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Experimental Design Eighteen male calves 830 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Results Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Conclusion Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Introduction We conducted the present study to investigate whether early large-volume crystalloid infusion can restore gut mucosal blood flow and mesenteric oxygen metabolism in severe sepsis. Methods Anesthetized and mechanically ventilated male mongrel dogs were challenged with intravenous injection of live Escherichia coli (6 × 109 colony-forming units/ml per kg over 15 min). After 90 min they were randomly assigned to one of two groups – control (no fluids; n = 13) or lactated Ringer's solution (32 ml/kg per hour; n = 14) – and followed for 60 min. Cardiac index, mesenteric blood flow, mean arterial pressure, systemic and mesenteric oxygen-derived variables, blood lactate and gastric carbon dioxide tension (PCO2; by gas tonometry) were assessed throughout the study. Results E. coli infusion significantly decreased arterial pressure, cardiac index, mesenteric blood flow, and systemic and mesenteric oxygen delivery, and increased arterial and portal lactate, intramucosal PCO2, PCO2 gap (the difference between gastric mucosal and arterial PCO2), and systemic and mesenteric oxygen extraction ratio in both groups. The Ringer's solution group had significantly higher cardiac index and systemic oxygen delivery, and lower oxygen extraction ratio and PCO2 gap at 165 min as compared with control animals. However, infusion of lactated Ringer's solution was unable to restore the PCO2 gap. There were no significant differences between groups in mesenteric oxygen delivery, oxygen extraction ratio, or portal lactate at the end of study. Conclusion Significant disturbances occur in the systemic and mesenteric beds during bacteremic severe sepsis. Although large-volume infusion of lactated Ringer's solution restored systemic hemodynamic parameters, it was unable to correct gut mucosal PCO2 gap.