149 resultados para Hyperthyroidism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are essential for survival; they are involved in the processes of development, growth, and metabolism. In addition to hyperthyroidism or hypothyroidism, THs are involved in other diseases. The role of THs in the development and differentiation of mammary epithelium is well established; however, their specific role in the pathogenesis of breast cancer (BC) is controversial. Steroid hormones affect many human cancers and the abnormal responsiveness of the mammary epithelial cells to estradiol (E2) in particular is known to be an important cause for the development and progression of BC. The proliferative effect of T3 has been demonstrated in various types of cancer. In BC cell lines, T3 may foster the conditions for tumor proliferation and increase the effect of cell proliferation by E2; thus, T3 may play a role in the development and progression of BC. Studies show that T3 has effects similar to E2 in BC cell lines. Despite controversy regarding the relationship between thyroid disturbances and the incidence of BC, studies show that thyroid status may influence the development of tumor, proliferation and metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To investigate the role of TH (thyroid hormones) in 5'-nucleotidase activity and expression in cardiac soluble fraction (SF). Main methods: Male Wistar rats received daily injections of 14 (10, 25 or 50 mu g T4/100 g body weight) for 14 days to develop a hyperthyroidism condition. Thyroidectomy was performed in other animals to mimic hypothyroidism, and 14 days after surgery they were submitted to TH replacement therapy. Key findings: T4 reduced the 5'-nucleotidase activity (T4-25. P<0.05 and 14-50, P<0.01) in the SF. Conversely, hypothyroidism significantly increased the 5'-nucleotidase activity in this fraction (P<0.001) and TH replacement therapy reversed the latter result (P<0.001 compared to hypothyroid group). The analysis of protein expression in the SF showed that 5'-nucleotidase was more expressed in hypothyroid than in the control group and that the phosphorylated state of PKC observed in this condition may contribute to a possible mechanism of 5'-nucleotidase modulation by thyroid status. Significance: Taken together, these data reveal that TH can influence adenosine production by modulating 5'-nucleotidase activity and expression, which may contribute to the cardioprotective effect and the maintenance of cardiac function under TH privation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of this study was to determine thyroid hormone (TH) profile in postmenopausal patients with breast cancer (BC). Subjects and methods: 12 CaM patients stages I or II, without interventions that could interfere with tumor progression were selected, as well as and a control group with 18 postmenopausal women without CaM. We measured serum anti-thyroperoxidase antibody (TPOAB), thyroid-stimulating hormone (TSH), free thyroxine (T4L), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), before and after surgery, besides immunohistochemistry for estrogen (ER) and progesterone (PR) receptors. Results: Four patients with CaM showed changes in thyroid hormone profile: two had hyperthyroidism, one hypothyroidism, and one was positive for TPO-AB. All of them positive for ER and PR.TSH levels in breast cancer patients were not different from levels found in the control group (1.89 +/- 1.56 vs. 2.86 +/- 3.12 mIU/mL), but the levels of T4L in patients with CaM were statistically higher than those of the control group (1.83 +/- 0.57 vs. 1.10 +/- 0.20 ng/dL). Conclusion: These results reinforce the need for assessment of thyroid status in CaM patients, since in the absence of E2, changes in clinical HTs can act in E2-controlled processes. Arq Bras Endocrinol Metab. 2012;56(4):238-43

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T-3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T-3 and insulin action. Methods: Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T-3. Results: Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T-3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T-3 treatment; however, in these cells glucose transport was not stimulated by T-3. In wild-type L6 cells, although T-3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T-3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T-3 plus insulin. Conclusions: These data reveal that T-3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T-3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Hydatidiform mole (HM) is characterized by abnormal proliferation of human trophoblast with producers functioning tissues of human chorionic gonadotropin. It can evolve with ovarian cysts tecaluteínicos, hypertension of pregnancy or hyperthyroidism. The incidence of HM is variable and its etiology poorly known, associated with nutritional factors, environmental, age, parity, history of HM, oral contraceptives, smoking, consanguinity or defects in germ cells. There is no reference in literature on HM resulting from sexual violence, objective of this report. Method Description of two cases of HM among 1146 patients with pregnancy resulting from sexual violence treated at Hospital Pérola Byington, São Paulo, from July 1994 to August 2011. Results The cases affected young, white, unmarried, low educated and low parity women. Sexual violence was perpetrated by known offenders unrelated to the victims, under death threat. Ultrasound and CT of the pelvis showed bulky uterus compatible with HM without myometrial invasion. One case was associated with theca lutein cysts. The two cases were diagnosed in the second trimester of pregnancy and evolved with hyperthyroidism. There was no hypertension, disease recurrence, metastasis or sexually transmitted infection. Conclusion The incidence of HM was 1:573 pregnancies resulting from rape, within the range estimated for Latin American countries. Trophoblastic material can be preserved to identify the violence perpetrator, considering only the paternal HM chromosomes. History of sexual violence should be investigated in cases of HM in the first half of adolescence and women in a vulnerable condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Thyroid hormone induces cardiac hypertrophy and preconditions the myocardium against Ischemia/Reperfusion (I/R) injury. Type 2 Angiotensin II receptors (AT2R) are shown to be upregulated in cardiac hypertrophy observed in hyperthyroidism and this receptor has been reported to mediate cardioprotection against ischemic injury. Methods The aim of the present study was to evaluate the role of AT2R in the recovery of myocardium after I/R in isolated hearts from T3 treated rats. MaleWistar rats were treated with triiodothyronine (T3; 7 μg/100 gBW/day, i.p.) in the presence or not of a specific AT2R blocker (PD123,319; 10 mg/Kg) for 14 days, while normal rats served as control. After treatment, isolated hearts were perfused in Langendorff mode; after 30 min of stabilization, hearts were subjected to 20 min of zero-flow global ischemia followed by 25 min, 35 min and 45 min of reperfusion. Results T3 treatment induced cardiac hypertrophy, which was not changed by PD treatment. Post-ischemic recovery of cardiac function was increased in T3-treated hearts after 35 min and 45 min of reperfusion as compared to control and the ischemic contracture was accelerated and intensified. AT2R blockade was able to return the evaluated functional parameters of cardiac performance (LVDP, +dP/dtmáx and −dP/dtmin) to the control condition. Furthermore, AT2R blockade prevented the increase in AMPK expression levels induced by T3, suggesting its possible involvement in this process. Conclusion AT2R plays a significant role in T3-induced cardioprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperthyroidism promotes cardiac hypertrophy and the Angiotensin type 1 receptor (AT1R) has been demonstrated to mediate part of this response. Recent studies have uncovered a potentially important role for the microRNAs (miRNAs) in the control of diverse aspects of cardiac function. Then, the objective of the present study was to investigate the action promoted by hyperthyroidism on β-MHC/miR-208b expression and on α-MHC/miR-208a expression, as well as the possible contribution of the AT1R in this event. The findings of this study confirmed that AT1R is a key mediator of the cardiac hypertrophy induced by hyperthyroidism. Additionally, we demonstrated that like β-MHC, miR-208b was down-regulated in the hyperthyroid group. Similarly, like the expression of its host gene, α-MHC, miR-208a expression was up-regulated in response to hyperthyroidism. Finally, our data suggest for the first time that AT1R mediates the hyperthyroidism-induced increase on cardiac miRNA-208a/α-MHC levels, while does not influence on the reduction of miRNA-208b/β-MHC levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid nodules are a very common clinical finding with an age-related increase in prevalence. The clinical detection of thyroid nodules is outnumbered by the ultrasonographic assessment of thyroid nodules. The clinical challenge is to exclude thyroid cancer and clinical or subclinical hyperthyroidism. Ultrasonography is the first imaging study in all patients with palpable nodules; their size and TSH determine further diagnostic evaluations. Fine-needle aspiration (cytology) is recommended in euthyroid patients of nodules measuring more than 1-1.5 cm in diameter. Nodules more than 4 cm in diameter have to be removed surgically without preceding cytological examination. Without risk factors thyroid nodules are followed by clinical examination and ultrasonography every 6-12 months, in case of symptoms or rapid growth a follow-up assessment should be done earlier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antithyroid drugs mainly include thioimidazole (carbimazole, methimazole=thiamazole) and propylthiouracil. After absorption, carbimazole is rapidly metabolized to methimazole and thus switching between these two drugs should not be considered in case of side effects. Furthermore, in case of side effects, sometimes even cross reactions between thioimidazoles and propylthiouracil occur. Common and typical adverse reactions of antithyroid drugs include dose dependent hypothyroidism and thus thyroid function should be repeatedly checked while the patient is on antithyroid drugs. Furthermore, pruritus and rash may develop. In this case, one might try to switch from thioimidazoles to propylthiouracil or vice versa. Antithyroid drugs may cause mild dose dependent neutropenia or severe allergy-mediated agranulocytosis, which typically occurs during the first three months of treatment, has an incidence of 3 per 10,000 patients and cross reactivity between thioimidazoles to propylthiouracil may occur. Rarely, antithyroid drugs can cause aplastic anemia. Mainly propylthiouracil, but sometimes also methimazole may lead to an asymptomatic transient increase in liver enzymes or to severe, even lethal liver injury of cholestatic or hepatocellular pattern. Since propylthiouracil associated liver injury was observed increasingly among children and adolescent, it has been suggested to prefer thioimidazoles for these patients. Because of these potential serious adverse effects, physicians should advise patients to immediately seek medical help if they get a fever or sore throat or malaise, abdominal complaints or jaundice, respectively. Furthermore, arthralgias may develop in 1-5% of patients under both antithyroid drugs. Since arthralgias may be the first symptom of more serious immunologic side effects, it is recommended to stop the antithyroid drug in this case. Drug induced polyarthritis mainly develops during the first month of therapy, whereas ANCA-positive vasculitis is generally observed only after long term exposure to propylthiouracil or very rarely with the thioimidazoles. The teratogenic risk of the thioimidazoles is somewhat higher (Aplasia cutis congenita), that is why one generally recommends preferring propylthiouracil during pregnancy. During breast feeding both, thioimidazoles or propylthiouracil, may be administered. Nowadays, perchlorate is only used short term in case of latent hyperthyroidism before administering iodine-containing contrast agents. Therefore, the known side effects, which usually are only observed after long term treatment, are not an issue any more.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of antithyroid drug treatment of Graves' hyperthyroidism is documented by measuring initially free T4 and free T3 and later free T4, free T3 and TSH. An elevated titer of the Graves'-specific thyroid stimulating antibodies is not usually rechecked before the end of the antithyroid drug therapy. Thyroxine treatment of primary hypothyroidism is controlled by TSH measurements. In patients in whom TSH levels might be affected by drugs or nonthyroid diseases, free T4 is measured in addition to TSH. The assessment of the treatment of Hashimoto's chronic thyroiditis consists of the control of the therapy of its associated hypothyroidism. In subacute thyroiditis de Quervain control of the effectiveness of the analgesic therapy is most important. To check the effect of thyroid hormone treatment given with the intent to reduce goiter size, serial sonographies are of great value. In the follow-up of patients with thyroid carcinomas, measurements of thyroglobulin (for papillary and follicular thyroid cancers) and of calcitonin (for medullary thyroid cancers) in the serum as well as thyroid scans and other imaging procedures play an important role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid diseases are caused by a disturbance of thyroid hormone secretion, inflammations or tumors of the thyroid or combinations thereof. Most important causes for hyperthyroidism are Graves' disease and toxic nodular goiters (including toxic adenomas). Hypothyroidism is often caused by Hashimoto's chronic thyroiditis and can occur in patients after thyroidectomy. Chronic hashimoto's thyroiditis and subacute de Quervain's thyroiditis are the thyroid inflammations most frequently seen. Graves' disease and Hashimoto's thyroiditis are autoimmune thyroid diseases. Thyroid tumors encompass benign solitary nodules, diffuse and nodular goiters, papillary, follicular, medullary and anaplastic carcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTH-rP) are two potent hypercalcemic hormones that act on the same targets. Autonomous secretion of the former is involved in primary hyperparathyroidism (PHPT), whereas the latter is responsible for humoral hypercalcemia of malignancy (HHM). Methods: From 250 consecutive, hypercalcemic serum samples sent to our laboratory for assessment of intact PTH, we were able to obtain clinical information, as well as an additional plasma sample for PTH-rP measurement, in 134 patients. At the time of sampling, patients could be classified into seven groups: cancer without known bone metastases (CaNoMeta, n=36), cancer with bone metastases (CaMeta, n=9), no evidence of cancer (noEvCa, n=71), sarcoidosis (Sarc, n=3), end-stage renal disease (ESRD, n=12), vitamin D overdose (VIT-D, n=2), and hyperthyroidism (Thyr, n=1). Results: In the CaNoMeta group, 29/36 patients had elevated PTH-rP levels, 9/36 patients had inappropriately elevated PTH levels, and 5/36 had elevated levels of both hormones. In the CaMeta group, three of the nine patients had inappropriately elevated PTH levels, two of them with concomitantly elevated PTH-rP levels. In the NoEvCa group, 63/71 patients had an inappropriate elevation of PTH levels and were diagnosed as having PHPT. Four of the 71 patients had elevated levels of both PTH and PTH-rP; three of them were in poor health and died within a short period of time. All of the ESRD patients had very high PTH and normal PTH-rP levels, except for one woman with high PTH-rP and undetectable PTH levels; she died from what later turned out to be a recurrent bladder carcinoma. In the Sarc, Vit-D, and Thyr groups, both PTH and PTH-rP levels were normal. Conclusions: (1) Elevated PTH-rP levels are a common finding in cancer patients without bone metastases. Intact PTH, however, should always be measured in hypercalcemic patients with malignancy because concurrent primary hyperparathyroidism is not rare. (2) Primary hyperparathyroidism accounts for hypercalcemia in 90% of patients without evidence of cancer whose PTH-rP levels may also be found to be elevated in a few cases, even some with surgically demonstrated parathyroid adenoma.