393 resultados para Hyla armata
Resumo:
A thirty-six meter thick section of Miocene mica clay of Gross Pampau was studied for molluscs and bolboformas. The molluscs define the regional substages of late Reinbekian to late Langenfeldian. The bolboformas enable the cross-correlation with the nannoplankton subdivision and the geological time scales of BERGGREN et al. (1995). New species are Periploma ariei, Ringicula tiedemanni, Bolboforma robusta badenensis, and Bolboforma contorta.
Resumo:
This report contains the occurrence data for dinoflagellate cysts recorded from 163 samples taken from Sites 902 through 906, during Ocean Drilling Program (ODP) Leg 150. The dinoflagellate cyst (dinocyst) stratigraphy has been presented in Mountain, Miller, Blum, et al. (1994, doi:10.2973/odp.proc.ir.150.1994), and was based on these data. This report provides the full dinocyst data set supporting the dinocyst stratigraphic interpretations made in Mountain, Miller, Blum, et al. (1994). For Miocene shipboard dinocyst stratigraphy, I delineated 10 informal zones: pre-A, and A through I, in ascending stratigraphic order. These zones are defined in Shipboard Scientific Party (1994a, doi:10.2973/odp.proc.ir.150.103.1994), and are based on my studies of Miocene dinocyst stratigraphy in the Maryland and Virginia coastal plain (de Verteuil and Norris, 1991, 1992; de Verteuil, 1995). This zonation has been slightly revised (de Verteuil and Norris, 1996), and the new formal zone definitions are repeated below. Each new zone has an alpha-numeric abbreviation starting with "DN" (for Dinoflagellate Neogene). The equivalence between the informal zones reported in Mountain, Miller, Blum, et al. (1994), and the new DN zones is illustrated in Figure 1. For clarity, I delineated both zonations in the range charts that accompany this report (Tables 1-6). De Verteuil and Norris (1996a), using these and other data, correlated the DN zonation with the geological time scale of Berggren et al. (1995). Figure 2 summarizes these correlations and can be used to check the chronostratigraphic position of samples in this report, as determined by dinocyst stratigraphy. A thorough discussion of the basis for, and levels of uncertainty associated with, these correlations to the Cenozoic time scale can be found in de Verteuil and Norris (1996a). The Appendix lists all the dinocyst taxa recorded during shipboard analyses of Leg 150 samples. Open nomenclature is used for undescribed taxa. The range charts and Appendix also include reference to several new taxa that de Verteuil and Norris (1996b) described from Miocene coastal plain strata in Maryland and Virginia. Names of these taxa in Tables 1 through 6 and in the Appendix of this report are not intended for effective publication as defined in the International Code of Botanical Nomenclature (ICBN, Greuter et al., 1994). Therefore, taxonomic nomenclature contained in this report is not to be treated as meeting the conditions of effective and valid publication (ICBN; Article 29).
Resumo:
46 hydropolyp species of 28 genera and 10 families were sampled during the "Meteor" passage 1964/65 (IIOE) through the Red Sea and its northern and southern exits and on the occasion of several ecological investigations of 29 selected coral reef sections of the central Red Sea and the Gulf of Aqaba. These collections comprise 128 single records of hydropolyp species. Three species and two genera each with one species are doubtful. 25 species, seven genera, one family and one subfamily, together from 49 records have not previously been found in the Red Sea and its exits. Including these newly reported species, the total list increases from 64 species and 112 records to 89 species and 240 single records and 51 additional ones. Scanning microscopical photos, made for the first time for the illustration of the hydropolyps, have been shown to be suitable for a better characterization and diagnosis of the species. Qualified results on the reasons for the horizontal distribution of the species known from the Red Sea area cannot be given because of the low number of samples sporadically distributed through the whole area. In contrast with this fact, the vertical spread of the species sampled seems primarily to be regulated by water exchange and light intensity. For example, four species of hydropolyps are excellent indicators of certain abiotic factors or combinations of them: Gymnangium eximium reacts extremely stenophote-photophobe-rheophil, Eudendrium ramosum moderately stenophote-photophobe-rheophobe, Lytocarpus philippinus moderately stenophote-photophil-rheophil, and Halocordyle disticha var. australis extremely stenophote-photophil but moderately rheophil. Other species have been found throughout all the light zones. Combined with the small size of their colonies their euryphotic behaviour does not allow their use as indicator species.