969 resultados para High-resolution Electron Microscopy
Resumo:
High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.
Resumo:
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Resumo:
The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5–10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is ∼150 nm. MTs growing from duplicated but not separated SPBs have a median length of ∼130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to ∼300 nm and then decreases to ∼30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.
Resumo:
Transduction-channel gating by hair cells apparently requires a gating spring, an elastic element that transmits force to the channels. To determine whether the gating spring is the tip link, a filament interconnecting two stereocilia along the axis of mechanical sensitivity, we examined the tip link's structure at high resolution by using rapid-freeze, deep-etch electron microscopy. We found that the tip link is a right-handed, coiled double filament that usually forks into two branches before contacting a taller stereocilium; at the other end, several short filaments extend to the tip link from the shorter stereocilium. The structure of the tip link suggests that it is either a helical polymer or a braided pair of filamentous macromolecules and is thus likely to be relatively stiff and inextensible. Such behavior is incompatible with the measured elasticity of the gating spring, suggesting that the gating spring instead lies in series with the helical segment of the tip link.
Resumo:
We report on a procedure for tissue preparation that combines thoroughly controlled physical and chemical treatments: quick-freezing and freeze-drying followed by fixation with OsO4 vapors and embedding by direct resin infiltration. Specimens of frog cutaneous pectoris muscle thus prepared were analyzed for total calcium using electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) approach. The preservation of the ultrastructure was excellent, with positive K/Na ratios revealed in the fibers by x-ray microanalysis. Clear, high-resolution EELS/ESI calcium signals were recorded from the lumen of terminal cisternae of the sarcoplasmic reticulum but not from longitudinal cisternae, as expected from previous studies carried out with different techniques. In many mitochondria, calcium was below detection whereas in others it was appreciable although at variable level. Within the motor nerve terminals, synaptic vesicles as well as some cisternae of the smooth endoplasmic reticulum yielded positive signals at variance with mitochondria, that were most often below detection. Taken as a whole, the present study reveals the potential of our experimental approach to map with high spatial resolution the total calcium within individual intracellular organelles identified by their established ultrastructure, but only where the element is present at high levels.
Resumo:
Kinesin is a molecular motor that transports organelles along microtubules. This enzyme has two identical 7-nm-long motor domains, which it uses to move between consecutive tubulin binding sites spaced 8 nm apart along a microtubular protofilament. The molecular mechanism of this movement, which remains to be elucidated, may be common to all families of motor proteins. In this study, a high-resolution optical-trap microscope was used to measure directly the magnitude of abrupt displacements produced by a single kinesin molecule transporting a microscopic bead. The distribution of magnitudes reveals that kinesin not only undergoes discrete 8-nm movements, in agreement with previous work [Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S.M. (1993) Nature (London) 365, 721-727], but also frequently exhibits smaller movements of about 5 nm. A possible explanation for these unexpected smaller movements is that kinesin's movement from one dimer to the next along a protofilament involves at least two distinct events in the mechanical cycle.
Resumo:
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.
Resumo:
Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^
Resumo:
High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.
Resumo:
High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.
Resumo:
The microphase separation of block copolymer (BCP) thin films can afford a simple and cost-effective means to studying nanopattern surfaces, and especially the fabrication of nanocircuitry. However, because of complex interface effects and other complications, their 3D morphology, which is often critical for application, can be more complex than first thought. Here, we describe how emerging microscopic methods may be used to study complex BCP patterns and reveal their rich detail. These methods include helium ion microscopy (HIM) and high resolution x-section transmission electron microscopy (XTEM), and complement conventional secondary electron and atomic force microscopies (SEM and TEM). These techniques reveal that these structures are quite different to what might be expected. We illustrate the advances in the understanding of BCP thin film morphology in several systems, which result from this characterization. The systems described include symmetric, lamellar forming polystyrene-b-polymethylmethacrylate (PS-b-PMMA), cylinder forming polystyrene-b-polydimethylsiloxane (PS-b-PDMS), as well as lamellar and cylinder forming patterns of polystyrene-b-polyethylene oxide (PS-b-PEO) and polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP). Each of these systems exhibits more complex arrangements than might be first thought. Finding and developing techniques whereby complex morphologies, particularly at very small dimensions, can be determined is critical to the practical use of these materials in many applications. The importance of quantifying these complex morphologies has implications for their use in integrated circuit manufacture, where they are being explored as alternative pattern forming methods to conventional UV lithography.
Resumo:
This thesis details the top-down fabrication of nanostructures on Si and Ge substrates by electron beam lithography (EBL). Various polymeric resist materials were used to create nanopatterns by EBL and Chapter 1 discusses the development characteristics of these resists. Chapter 3 describes the processing parameters, resolution and topographical and structural changes of a new EBL resist known as ‘SML’. A comparison between SML and the standard resists PMMA and ZEP520A was undertaken to determine the suitability of SML as an EBL resist. It was established that SML is capable of high-resolution patterning and showed good pattern transfer capabilities. Germanium is a desirable material for use in microelectronic applications due to a number of superior qualities over silicon. EBL patterning of Ge with high-resolution hydrogen silsesquioxane (HSQ) resist is however difficult due to the presence of native surface oxides. Thus, to combat this problem a new technique for passivating Ge surfaces prior to EBL processes is detailed in Chapter 4. The surface passivation was carried out using simple acids like citric acid and acetic acid. The acids were gentle on the surface and enabled the formation of high-resolution arrays of Ge nanowires using HSQ resist. Chapter 5 details the directed self-assembly (DSA) of block copolymers (BCPs) on EBL patterned Si and, for the very first time, Ge surfaces. DSA of BCPs on template substrates is a promising technology for high volume and cost effective nanofabrication. The BCP employed for this study was poly (styrene-b-ethylene oxide) and the substrates were pre-defined by HSQ templates produced by EBL. The DSA technique resulted into pattern rectification (ordering in BCP) and in pattern multiplication within smaller areas.