864 resultados para Hierarchical sampling
Resumo:
As part of a wider study to develop an ecosystem-health monitoring program for wadeable streams of south-eastern Queensland, Australia, comparisons were made regarding the accuracy, precision and relative efficiency of single-pass backpack electrofishing and multiple-pass electrofishing plus supplementary seine netting to quantify fish assemblage attributes at two spatial scales (within discrete mesohabitat units and within stream reaches consisting of multiple mesohabitat units). The results demonstrate that multiple-pass electrofishing plus seine netting provide more accurate and precise estimates of fish species richness, assemblage composition and species relative abundances in comparison to single-pass electrofishing alone, and that intensive sampling of three mesohabitat units (equivalent to a riffle-run-pool sequence) is a more efficient sampling strategy to estimate reach-scale assemblage attributes than less intensive sampling over larger spatial scales. This intensive sampling protocol was sufficiently sensitive that relatively small differences in assemblage attributes (<20%) could be detected with a high statistical power (1-β > 0.95) and that relatively few stream reaches (<4) need be sampled to accurately estimate assemblage attributes close to the true population means. The merits and potential drawbacks of the intensive sampling strategy are discussed, and it is deemed to be suitable for a range of monitoring and bioassessment objectives.
Resumo:
We examine some variations of standard probability designs that preferentially sample sites based on how easy they are to access. Preferential sampling designs deliver unbiased estimates of mean and sampling variance and will ease the burden of data collection but at what cost to our design efficiency? Preferential sampling has the potential to either increase or decrease sampling variance depending on the application. We carry out a simulation study to gauge what effect it will have when sampling Soil Organic Carbon (SOC) values in a large agricultural region in south-eastern Australia. Preferential sampling in this region can reduce the distance to travel by up to 16%. Our study is based on a dataset of predicted SOC values produced from a datamining exercise. We consider three designs and two ways to determine ease of access. The overall conclusion is that sampling performance deteriorates as the strength of preferential sampling increases, due to the fact the regions of high SOC are harder to access. So our designs are inadvertently targeting regions of low SOC value. The good news, however, is that Generalised Random Tessellation Stratification (GRTS) sampling designs are not as badly affected as others and GRTS remains an efficient design compared to competitors.
Resumo:
Diverse morphologies of multidimensional hierarchical single-crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour-phase transport deposition technique by placing Au-coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas-phase supersaturation at the sample position. In particular, room-temperature photoluminescence measurements reveal an intense near-band-edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.
Resumo:
Effective control of dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst patterns is demonstrated. Scanning/transmission electron microscopy, atomic force microscopy, Raman spectroscopy, and numerical simulations show that by changing the secondary and tertiary layers one can control the properties of the nanotube arrays. The arrays with the highest surface density of vertically aligned nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina and silica layers differing in thickness by one order of magnitude from one another. The results are explained in terms of the catalyst structure effect on carbon diffusivity.
Resumo:
The possibility to control the electric resistivity-temperature dependence of the nanosized resistive components made using hierarchical multilevel arrays of self-assembled gold nanoparticles prepared by multiple deposition/annealing is demonstrated. It is experimentally shown that the hierarchical three-level patterns, where the nanoparticles of sizes ranging from several nanometers to several tens of nanometer play a competitive roles in the electric conductivity, demonstrate sharp changes in the activation energy. These patterns can be used for the precise tuning of the resistivity-temperature behavior of nanoelectronic components.
Resumo:
These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.
Resumo:
A laboratory experiment was set up in small chambers for monitoring greenhouse gas emissions and determining the most suitable time for sampling. A six-treatment experiment was conducted, including a one week pre-incubation and a week for incubation. Timelines for sampling were 1, 2, 3, 6 and 24 hours after closing the lid of the incubation chambers. Variation in greenhouse gas fluxes was high due to the time of sampling. The rates of gas emissions increased in first three hours and decreased afterward. The rates of greenhouse gas emissions at 3 hours after closing lids was close to the mean for the 24-h period.
Resumo:
Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.
Resumo:
We present a novel method for improving hierarchical speaker clustering in the tasks of speaker diarization and speaker linking. In hierarchical clustering, a tree can be formed that demonstrates various levels of clustering. We propose a ratio that expresses the impact of each cluster on the formation of this tree and use this to rescale cluster scores. This provides score normalisation based on the impact of each cluster. We use a state-of-the-art speaker diarization and linking system across the SAIVT-BNEWS corpus to show that our proposed impact ratio can provide a relative improvement of 16% in diarization error rate (DER).
Resumo:
Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox™), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24× sample enrichment required to induce a 50% response in the Microtox™ assay to 84×, from 30× sample enrichment to induce a 50% reduction in photosynthetic yield to 125×, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.