395 resultados para HTS Coils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ellipsoidal harmonics are presented as a basis function set for the design of shim coils for magnetic resonance imaging (MRI) or spectroscopy. MR shim coils may be either superconductive or resistive. Ellipsoidal harmonics form an orthogonal set over an ellipsoid and hence are appropriate in circumstances where the imaging or spectroscopic region of a magnet more closely conforms to an ellipsoid rather than a sphere. This is often the case in practice. The Cartesian form of ellipsoidal harmonics is discussed. A method for the design of streamline coil designs is detailed and patterns for third-order ellipsoidal (Lame) shims wound on a cylindrical surface are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During studies of amphibian sperm cryopreservation, a new species of myxosporidean parasite (Myxozoa, Myxosporae) was observed in the testes of the Australian dwarf green tree frog Litoria fallax (Peters). Myxosporidiasis was found to have no affect on L. fallax body condition or sperm numbers. Myxobolus spores from L. fallax are morphologically distinct from Myxobolus hylae spores (infecting the sympatric Litoria aurea Lesson) and the three previously named (exotic to Australia) Myxobolus species found in anurans. Myxobolus fallax n. sp. is characterised by: pseudocyst white, spherical to ovoid, 141 x74 to 438 x337 mum in diameter (mature); plasmodium with spores loosely arranged within interior. Spores ovoid 13.4 +/- 0.5 (12.6-14.6) mum length, 9.5 +/- 0.4 (8.3-10.6) mum width, 6.8 +/- 0.4 (6.5-7.6) mum depth, 1.4 +/- 0.1 (1.3-1.6) length/width; polar capsules broadly pyriform and equal in size 4.2 +/- 0.3 (3.3-4.7) mum length, 2.4 +/- 0.2 (2.1-2.8) mum width; filament coils 7-8, wound tightly and perpendicular to the longitudinal axis of the capsule; polar filament 34 +/- 7.0 (18-50) mum length; intercapsular appendix and sutural ridge folds absent; and iodinophilous vacuole and mucous envelope lacking. In addition to this new species, data from archival samples of M. hylae are provided which show two morphologically distinct spore types. Both appeared rarely in the same pseudocysts and we cautiously retain the single species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-throughput screening (HTS) using high-density microplates is the primary method for the discovery of novel lead candidate molecules. However, new strategies that eschew 2D microplate technology, including technologies that enable mass screening of targets against large combinatorial libraries, have the potential to greatly increase throughput and decrease unit cost. This review presents an overview of state-of-the-art microplate-based HTS technology and includes a discussion of emerging miniaturized systems for HTS. We focus on new methods of encoding combinatorial libraries that promise throughputs of as many as 100 000 compounds per second.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In modern magnetic resonance imaging (MRI), patients are exposed to strong, time-varying gradient magnetic fields that may be able to induce electric fields (E-fields)/currents in tissues approaching the level of physiological significance. In this work we present theoretical investigations into induced E-fields in the thorax, and evaluate their potential influence on cardiac electric activity under the assumption that the sites of maximum E-field correspond to the myocardial stimulation threshold (an abnormal circumstance). Whole-body cylindrical and planar gradient coils were included in the model. The calculations of the induced fields are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, whole-body model. The potential for cardiac stimulation was evaluated using an electrical model of the heart. Twelve-lead electrocardiogram (ECG) signals were simulated and inspected for arrhythmias caused by the applied fields for both healthy and diseased hearts. The simulations show that the shape of the thorax and the conductive paths significantly influence induced E-fields. In healthy patients, these fields are not sufficient to elicit serious arrhythmias with the use of contemporary gradient sets. However, raising the strength and number of repeated switching episodes of gradients, as is certainly possible in local chest gradient sets, could expose patients to increased risk. For patients with cardiac disease, the risk factors are elevated. By the use of this model, the sensitivity of cardiac pathologies, such as abnormal conductive pathways, to the induced fields generated by an MRI sequence can be investigated. (C) 2003 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In small, cylindrical gradient coils consisting of a single layer of wires, the limiting factor in achieving large magnetic field gradients is the rapid increase in coil resistance with efficiency. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, mathematical expressions have been developed that allow the design of multilayer coils. These expressions have previously been applied to the design of a four-layer z-gradient coil. As a further development, the equations have now been modified to allow the design of multilayer transverse gradient coils. The variation in coil performance with the number of layers employed has been investigated for coils of a size suitable for use in NMR microscopy, and the effect of constructing the coil using wires or cuts in a continuous conducting surface has also been assessed. We find that at fixed resistance a small wire-wound two-layer coil offers an increase in efficiency of a factor of about 1.5 compared with a single-layer coil. In addition, a two-layer coil of 10-mm inner diameter has been designed and built. This coil had an efficiency of 0.41 Tm-1 A(-1), a resistance of 0.96 +/- 0.01 Omega, and an inductance of 22.3 +/- 0.2 muH. The coil produces a gradient that deviates from linearity by less than 5% over a central cylindrical region of interest of height and length 6.2 mm. (C) 2003 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary objective : To investigate the speed and accuracy of tongue movements exhibited by a sample of children with dysarthria following severe traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Methods and procedures : Four children, aged between 12.75-17.17 years with dysarthria following TBI, were assessed using the AG-100 electromagnetic articulography system (Carstens Medizinelektronik). The movement trajectories of receiver coils affixed to each child's tongue were examined during consonant productions, together with a range of quantitative kinematic parameters. The children's results were individually compared against the mean values obtained by a group of eight control children (mean age of 14.67 years, SD 1.60). Main outcomes and results : All four TBI children were perceived to exhibit reduced rates of speech and increased word durations. Objective EMA analysis revealed that two of the TBI children exhibited significantly longer consonant durations compared to the control group, resulting from different underlying mechanisms relating to speed generation capabilities and distances travelled. The other two TBI children did not exhibit increased initial consonant movement durations, suggesting that the vowels and/or final consonants may have been contributing to the increased word durations. Conclusions and clinical implications : The finding of different underlying articulatory kinematic profiles has important implications for the treatment of speech rate disturbances in children with dysarthria following TBI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Zootécnica, 14 de Maio de 2015, Universidade dos Açores.