953 resultados para HPV tumor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck cancer patients often present with advanced metastatic disease resulting in a poor 5-year survival. Therefore, there is a need for non-invasive diagnostic tools that could complement conventional imaging to inform clinicians of patient outcomes and treatment responses. A liquid biopsy addresses this unmet clinical need; a simple peripheral blood draw could provide information about the disseminated disease in terms of circulating tumor cells and circulating tumor DNA. Moreover, detectable tumor DNA in the saliva of head and neck cancer patients could signify the early signs of the disease and present an opportunity for clinical intervention. This review provides an overview of the current literature with regard to the feasibility of such a test in the head and neck cancer field and highlights the need for such a test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary brain tumors are associated with significant physical, cognitive and psychosocial changes. Although treatment guidelines recommend offering multidisciplinary rehabilitation and support services to address patients’ residual deficits, the extent to which patients access such services is unclear. This study aimed to assess patients’ supportive care needs early after diagnosis, and quantify service awareness, referral and utilization. A population-based sample of 40 adults recently diagnosed with primary brain tumors was recruited through the Queensland Cancer Registry, representing 18.9% of the eligible population of 203 patients. Patients or carer proxies completed surveys of supportive care needs at baseline (approximately three months after diagnosis) and three months later. Descriptive statistics summarized needs and service utilization, and linear regression identified predictors of service use. Unmet supportive care needs were highest at baseline for all domains, and highest for the physical and psychological needs domains at each time point. At follow-up, participants reported awareness of, referral to, and use of 32 informational, support, health professional or practical services. All or almost all participants were aware of at least one informational (100%), health professional (100%), support (97%) or practical service (94%). Participants were most commonly aware of speech therapists (97%), physiotherapists (94%) and diagnostic information from the internet (88%). Clinician referrals were most commonly made to physiotherapists (53%), speech therapists (50%) and diagnostic information booklets (44%), and accordingly, participants most commonly used physiotherapists (56%), diagnostic information booklets (47%), diagnostic information from the internet (47%), and speech therapists (43%). Comparatively low referral to and use of psychosocial services may limit patients’ abilities to cope with their condition and the changes they experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kasvainten, ajatellaan syntyvän yksittäisen solun perimän mutaatioista, jonka seurauksena tuon solun kasvu häiriintyy. Ruoansulatuskanavan polyyppien syntyä käytetään usein mallina siitä, miten nämä epiteelisoluun kerääntyvät mutaatiot aiheuttavat asteittain pahenevan kasvuhäiriön. Peutz–Jeghersin oireyhtymä (PJS) on perinnöllinen polypoosisyndrooma, jossa oireita aiheuttavat erityisesti maha-suolikanavan hamartomatoottiset polyypit. Noin puolella PJS potilaista havaitaan mutaatioita LKB1 kasvunrajoite geenissä. Hiirille joilta toinen Lkb1 alleeli on poistettu (Lkb1+/-) kehittyy PJS-tyypin maha-suolikanavan polyyppeja, joissa on epiteelin liikakasvun lisäksi merkittävä sileälihaskomponentti, aivan kuten PJS polyypeissa. Kuten myös muissa ruoansulatuskanavan polypooseissa, sekä PJS että hiirten polyypeissa Cyclo-oxygenaasi-2:n (COX-2) määrä on usein kohonnut. PJS-polyyppien kehittymisen molekulaarinen mekanismi on kuitenkin selvittämättä. Koska vain osa PJS potilaista kantaa LKB1 mutaatioita, mutaatiot jossakin toisessa lokuksessa saattaisivat selittää osan PJS tapauksista. Jotta PJS:n geneettinen tausta selviäisi, seulottiin kolmen LKB1:n kanssa interaktoivan proteiinin (BRG1, STRADα ja MO25α) geenit PJS potilaista joilla ei ole havaittu LKB1 mutaatioita. Yhdessäkään tutkituista geeneistä ei havaittu tautia aiheuttavia mutaatioita. Näiden kolmen geenin pois sulkeminen, ja uusien menetelmien ansiosta kasvanut havaittujen Lkb1 mutaatioden määrä viittaavat LKB1:n olevan useimpien PJS tapausten taustalla. COX-2:n estäjien käyttö on tehokkaasti vähentänyt polyyppien määrää familiaarisessa adenomatoottisessa polypoosissa. Tästä johtuen COX-2:n eston tehokkuutta tutkittiin PJS polypoosissa. PJS-tyypin polypoosin havaittin pienenevän merkittävästi Lkb1+/- hiirissä, joilta oli lisäksi poistettu toinen tai molemmat COX-2:n alleeleista. Lisäksi farmakologinen COX-2:n esto Celecoxib:lla vähensi polypoosia tehokkaasti. Näin ollen COX-2:n eston tehokkuutta tutkittiin seuraavaksi PJS potilaissa. Kuuden kuukauden Celecoxib hoidon jälkeen polypoosin havaittiin vähentyneen merkittävästi osalla potilaista (2/6). Nämä tulokset osoittavat COX-2:n roolin PJS-polyyppien kehityksessä, ja viittaavat COX-2:n eston vähentävän polypoosia. Kasvunrajoitegeenin klassisen määritelmän mukaan kasvaimen kehitys vaatii perinnöllisen mutaation lisäksi geenin toisenkin alleelin mutaation, mutta PJS-polyyppien häiriintyneestä epiteelistä ei kuitenkaan systemaattisesti löydy toista LKB1:n mutaatiota. Havainto johti tutkimukseen, jossa selvitettiin voisiko LKB1:n kasvun rajoitus välittyäkin epäsuorasti tukikudokseksi ajatelluista sileälihassoluista. Tätä tutkittiin kehittämällä poistogeeninen hiirimalli jossa Lkb1 on mutatoitunut vain sileälihassoluissa. Näille hiirille kehittyi polyyppeja, jotka ovat kaikin tavoin PJS-polyyppien kaltaisia. Lkb1:n menettäneiden solujen havaittiin tuottavan vähemmän transformoivaa kasvutekijä beetaa (TGFß), joka aiheutti solujen välisen viestinnän heikentymisen ja mahdollisesti viereisten epiteelisolujen liikakasvun. Vastaava häiriö havaittiin myös PJS-potilaiden polyypeissa, mikä viittaa siihen, että potilaillakin sileälihassolujen häiriö on polyyppien taustalla. Havainto suuntaa täten hoitokohteiden etsintää ja osoittaa että LKB1 toimii kasvunrajoittajana epätyypillisellä tavalla pitäen naapurisolujen kasvun kurissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder, which predisposes to multiple tumours of the nervous system, typically schwannomas and meningiomas. Biallelic inactivation of the NF2 gene occurs both in sporadic and NF2-related schwannomas and in most meningiomas. The NF2 gene product merlin (or schwannomin) is structurally related to the ERM proteins, ezrin, radixin and moesin, which act as molecular linkers between the actin cytoskeleton and the plasma membrane. Merlin is a tumor suppressor that participates in cell cycle regulation. Merlin s phosphorylation status appears to be associated with its tumour suppressor activity, i.e. non-phosphorylated merlin functions as a tumour suppressor, whereas protein phosphorylation results in loss of functional activity. This thesis study was initiated to investigate merlin s role as a tumor suppressor and growth inhibitor. These studies show, that like many other tumor suppressors, also merlin is targeted to the nucleus at some stages of the cell cycle. Merlin s nuclear localization is regulated by cell cycle phase, contact inhibition and adhesion. In addition, a potential nuclear binding partner for merlin was identified, Human Enhancer of Invasion 10 (HEI10), a cyclin B interacting protein. Many tumor suppressors interact with microtubules and this thesis work shows that also merlin colocalizes with microtubules in mitotic structures. Merlin binds microtubules directly, and increases their polymerization in vitro and in vivo. In addition, primary mouse Schwann cells lacking merlin displays disturbed microtubule cytoskeleton. Fourth part of this thesis work began from the notion that PKA phosphorylates an unidentified site from the merlin N-terminus. Our studies show that serine 10 is a target for PKA and modulation of this residue regulates cytoskeletal organization, lamellipodia formation and cell migration. In summary, this thesis work shows that merlin s role is much more versatile than previously thought. It has a yet unidentified role in the nucleus and it participates in the regulation of both microtubules and the actin cytoskeleton. These studies have led to a better understanding of this enigmatic tumor suppressor, which eventually will aid in the design of specific drugs for the NF2 disease.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In preparation for the introduction of human papillomavirus (HPV) vaccine, we investigated awareness and knowledge of HPV/HPV vaccine and potential acceptability to HPV vaccine among mothers with a teenage daughter in Weihai, Shandong, China. A cross-sectional survey was conducted in 2013 with a sample of 1850 mothers who had a daughter (aged 9–17 years) attending primary, junior and senior high schools. In the final sample (N = 1578, response rate 85.30%), awareness of HPV was reported by 305 (19.32%) mothers. Awareness varied significantly by daughter’s age (P<0.01), mother’s education level (P<0.01), mother’s occupation (P<0.01), household income (P<0.01) and residence type (P<0.01). Knowledge about HPV/HPV vaccine was poor with a mean total score of 3.56 (SD = 2.40) out of a possible score of 13. Mothers with a higher education level reported higher levels of knowledge (P = 0.02). Slightly more than one-fourth (26.49%) of mothers expressed their potential acceptability of HPV vaccine for their daughters. Acceptability increased along with increased daughters’ age (P<0.01), household income (P<0.01) and knowledge level (P<0.01). House wives and unemployed mothers had the highest acceptability (P<0.01). The most common reasons for not accepting HPV vaccination were “My daughter is too young to have risk of cervical cancer (30.95%)”, “The vaccine has not been widely used, and the decision will be made after it is widely used (24.91%)”, “Worry about the safety of the vaccine (22.85%)”. Awareness and knowledge of HPV/HPV vaccines are poor and HPV vaccine acceptability is low among these Chinese mothers. These results may help inform appropriate health education programs in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circulating tumor cells (CTCs) are the seeds for cancer metastases development, which is responsible for >90% of cancer-related deaths. Accurate quantification of CTCs in human fluids could be an invaluable tool for understanding cancer prognosis, delivering personalized medicine to prevent metastasis and finding cancer therapy effectiveness. Although CTCs were first discovered more than 200 years ago, until now it has been a nightmare for clinical practitioners to capture and diagnose CTCs in clinical settings. Our society needs rapid, sensitive, and reliable assays to identify the CTCs from blood in order to help save millions of lives. Due to the phenotypic EMT transition, CTCs are undetected for more than one-third of metastatic breast cancer patients in clinics. To tackle the above challenges, the first volume in “Circulating Tumor Cells (CTCs): Detection Methods, Health Impact and Emerging Clinical Challenges discusses recent developments of different technologies, which have the capability to target and elucidate the phenotype heterogenity of CTCS. It contains seven chapters written by world leaders in this area, covering basic science to possible device design which can have beneficial applications in society. This book is unique in its design and content, providing an in-depth analysis to elucidate biological mechanisms of cancer disease progression, CTC detection challenges, possible health effects and the latest research on evolving technologies which have the capability to tackle the above challenges. It describes the broad range of coverage on understanding CTCs biology from early predictors of the metastatic spread of cancer, new promising technology for CTC separation and detection in clinical environment and monitoring therapy efficacy via finding the heterogeneous nature of CTCs. (Imprint: Nova Biomedical)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic acid reactive antibodies have been reported to inhibit various nucleio acid mediated functions in cell free systems. These antibodies were also shown to inhibit the growth of transformed cells in culture due to the high rate of endocytosis in transformed cells as compared to normal cells. In this report, we have tested the possibility of nucleic acid reactive antibodies inhibiting the growth of tumor cells in vivo. The life span of mice bearing Dalton's lymphoma ascites tumor cells was increased, when they were immunized with conjugates of guanosine-BSA, GMP-BSA and tRNA-MBSA complex before transplanting the tumor cells. A similar effect was also observed when mice were injected intraperitoneally with antibodies to guanosine oi GMP along with the tumor cells. The specificity was ascertained, as immunization with non-specific antigens did not show any significant effect on tumor bearing mice. The results shows that nucleic acid. reactive antibodies inhibit the growth of tumor cells in vivo.