302 resultados para HEISENBERG PYROCHLORE ANTIFERROMAGNET
Resumo:
The model of the position-dependent noncommutativity in quantum mechanics is proposed. We start with given commutation relations between the operators of coordinates [(x) over cap (i), (x) over cap (j)] = omega(ij) ((x) over cap), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obeys the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativity.
Resumo:
Here we use magnetic resonant x-ray diffraction to study the magnetic order in a 1.5 mu m EuTe film grown on (111) BaF(2) by molecular-beam epitaxy. At Eu L(II) and L(III) absorption edges, a resonant enhancement of more than two orders was observed for the sigma ->pi(') diffracted intensity at half-order reciprocal-lattice points, consistent with the magnetic character of the scattering. We studied the evolution of the (1/21/21/2) magnetic reflection with temperature. When heating toward the Neel temperature (T(N)), the integrated intensity decreased monotonously and showed no hysteresis upon cooling again, indicating a second-order phase transition. A power-law fit to the magnetization versus temperature curve yielded T(N)=9.99(1) K and a critical exponent beta=0.36(1), which agrees with the renormalization theory results for three-dimensional Heisenberg magnets. The fits to the sublattice magnetization dependence with temperature, disregarding and considering fourth-order exchange interactions, evidenced the importance of the latter for a correct description of magnetism in EuTe. A value of 0.009 was found for the (2j(1)+j(2))/J(2) ratio between the Heisenberg J(2) and fourth-order j(1,2) exchange constants. The magnetization curve exhibited a round-shaped region just near T(N) accompanied by an increase in the magnetic peak width, which was attributed to critical scattering above T(N). The comparison of the intensity ratio between the (1/21/21/2) and the (1/21/21/2) magnetic reflections proved that the Eu(2+) spins align within the (111) planes, and the azimuthal dependence of the (1/21/21/2) magnetic peak is consistent with the model of equally populated S domains.
Resumo:
NiCl(2)-4SC(NH(2))(2) (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excitation spectrum of DTN in the field-induced magnetically ordered phase by means of high-field electron spin resonance measurements at temperatures down to 0.45 K. We argue that two gapped modes observed in the experiment can be consistently interpreted within a four-sublattice antiferromagnet model with a finite interaction between two tetragonal subsystems and unbroken axial symmetry. The latter is crucial for the interpretation of the field-induced ordering in DTN in terms of BEC.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
We have obtained nonperturbative one-loop expressions for the mean-energy-momentum tensor and current density of Dirac's field on a constant electriclike back-round. One of the goals of this calculation is to give a consistent description of backreaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contribution,, are related to the Heisenberg-Euler Lagrangian. Then, we Study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the backreaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.
Resumo:
We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
Motivated by the quasi-one-dimensional antiferromagnet CaV(2)O(4), we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV(2)O(4), we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.
Resumo:
We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.
Resumo:
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.
Resumo:
A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J, and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices, and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.
Resumo:
We have developed a nonlocal functional of the exchange interaction for the ground-state energy of quantum spin chains described by the Heisenberg Hamiltonian. An alternating chain is used to obtain the correlation energy and a local unit-cell approximation is defined in the context of the density-functional theory. The agreement with our exact numerical data, for small chains, is significantly better than a previous formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. The results can be particularly relevant in the study of finite spin-1/2 Heisenberg chains, with exchange couplings changing, magnitude, or even sign, from bond-to-bond.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.