955 resultados para HANBURY-BROWN
Resumo:
A simple method was developed for extracting DNA from brown algae Laminaria japonica, which possess large amounts of acidic polysaccharides. Firstly, the sporophyte were washed by eliminating polysaccaride buffer to remove the polysaccharides and then ground in liquid nitrogen. Secondly, the powders were treated with lysing buffer. Thirdly, KAc was used to eliminate the remaining acidic polysaccharides. The extracted DNA was purified using a chloroform-isoamyl alcohol ( 24: 1 v/v), and precipitated in cold isopropanol. The yield was from 18.7 to 37.5 mu g g(-1) (wet weight) and the purity of total DNA was determined spectrophotometrically as the ratio of A(260)/A(280), which was about 1.7 - 1.9. The extracted DNA was of high quality and suitable for molecular analyses, such as PCR, restriction enzyme digestion. This method is a reproducible, simple, and rapid technique for routine DNA extraction from sporophyte in Laminaria japonica. Furthermore, the low cost of this method makes it attractive for large-scale studies.
Resumo:
Year-round induction of sporogenesis of Laminaria saccharina was performed by mechanically blocking the transport of the putative sporulation inhibitors produced by the blade meristem and culturing the plants in constant short days. Sporogenesis was successfully induced by removal of the blade meristem, either by cultivating distal blade fragments or by performing a transverse cut in the frond. The earliest sorus formation after artificial induction was 10 days. The age of the sporophytes used for induction was 6-11 months or 2 years in tank-grown or field-collected sporophytes, respectively. Zoospores were successfully released in all cases. Thus, by year-round artificial induction of sporogenesis, (1) sporeling production of L. saccharina and thereafter sporophyte cultivation could be achieved without seasonal limitation, and (2) the life cycle of L. saccharina (from spore to spore) could be completed within 8 months under controlled conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two photoperiodic responses, the development of sporophylls and hairs, have been quantified in sporophytes of the brown alga Undaria pinnatifida. In a final experiment, the algae were cultivated in outdoor, 2000-L seawater tanks in a greenhouse for up to 12 weeks, and daylength was regulated by automatic blinds mounted on top of the tanks. Vegetative young sporophytes were treated under short-day (SD; 8 h light per day) or long-day conditions (LD; 16 h light per day), at 12 h light per day or in a night-break regime (NB; 8 h light per day, 7.5 h dark, 1 h light, 7.5 h dark). The earliest sporophyll development was observed 6, 7 or 9 weeks under LD, NB or SD conditions, respectively. After 12 weeks the sporophylls were significantly longer and wider under LD or NB conditions than in the SD regime, and only half of the experimental algae had formed sporophylls under SD conditions, but all algae under LD or NB conditions. In a foregoing 7-week culture experiment performed in 300-L indoor tanks, enhanced sporophyll formation had also been observed under LD and not under SD conditions (NB omitted). In both experiments, blade elongation rates remained high until the end of the experiments in SD, but declined during sporophyll initiation in LD, NB or at 12 h light per day. Another difference caused by photoperiod was observed in regard to the development of surface hair spots which occurred in both experiments on the blades in LD, NB or at 12 h light per day with identical densities, but were completely lacking under SD conditions. It is concluded that U. pinnatifida is a facultatative long-day plant in regard to reproduction forming vigorously sporophylls in long days, and an obligate long-day plant in regard to hair formation.
Resumo:
Thalli from a brown alga Undaria pinnatifida were soaked by CaCl2 solution with different concentration and time at 4 degreesC, the effect of CaCl2 solution on efficiency and influorescence emission spectra of chloroplasts were examined. The results show that the efficiency of collected chloroplasts is increased markedly after soaking in CaCl2 solution. According to the results of collected efficiency and characteristic of influorescence emission spectra at room temperature of chloroplasts, it was suggested that soaking in the 0.2 mol/L CaCl2 solution for 10 min is optimum. Under this condition, the efficiency of collected chloroplasts is as 5 fold as control group, and the characteristics of chloroplasts obtained by CaCl2 soaking are similar to that of traditional method.
Resumo:
Eight kinds of pigment-protein complexes were resolved from the thylakoid membrane of the brown alga (Undaria pinnatifida Harv.) by using non-ionic detergent decanoyl-N-methylglucamide and PAGE technique. According to the apparent molecular weights, spectra characteristics, polypeptide compositions and referring to the higher plant spinach, eight pigment-protein complexes were named under Anderson's terminology system as CP I a, CP I, CPa, LHC1, LHC2, LHC3, LHC4, LHC5.
Resumo:
Extracting DNA from a variety of algae is rather difficult because of high levels of polysaccharides, tannins, and phenolics as these interfere with DNA isolation and downstream applications. High-quality plastid DNA (ptDNA) purification is particularly difficult because of its small proportion in total genomic DNA. This report describes an improved protocol for ptDNA purification that efficiently produces high-quality ptDNA from sporophytes of Laminaria japonica and several other algae. This improved protocol simplifies procedures for ptDNA purification and improves yield to 150-200 mu g of ptDNA per 100 g of frozen algal tissue. Polymerase chain reaction (PCR) amplification of conserved sequences has been used to verify purity of the ptDNA product.
Resumo:
Commercial farming of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura in China and South Korea in the sea depends on three sources of seedlings: holdfast-derived regenerated seedlings, young plants from wild population and zygote-derived seedlings. Like many successfully farmed seaweed species, the sustainable development of Hizikia farming will rely on a stable supply of artificial seedlings via sexual reproduction under controlled conditions. However, the high rate of detachment of seedlings after transfer to open sea is one of the main obstacles, and has limited large-scale application of zygote-derived seedlings. To seek the optimal condition for growing seedlings on substratum in land-based tanks for avoidance of detachment in this investigation, young seedlings were grown in both outdoor tanks exposed directly to sunlight and in indoor raceway tanks in reduced, filtered sunlight. Results showed that young seedlings, immediately after fertilization, could withstand a daily fluctuation of direct solar irradiance up to a level of 1800 mu mol photons m(-1)s(-1), and maintained a faster growth rate than seedlings grown in indoor tanks. Detailed experiments by use of chlorophyll fluorescence measurements further demonstrated that the overnight (12 h) recovery of optimal fluorescence quantum yield (F-v/F-m) of seedlings after 1 h treatment at 40 degrees C was 98%, and the 48 h recovery of F-v/F-m of seedlings after 1 h exposure to 1800 mu mol m(-2)s(-1) was 92%. Forty-one-day-old seedlings showed no significant decrease of optimal fluorescence quantum yield at salinity ranging from 30 to 5 ppt for a treatment up to 17 h. Six-hour desiccation treatment did not have any influence on the optimal fluorescence quantum yield. Exposure to 18 mmol L-1 sodium hypochlorite for 10 min did not damage the PSII efficiency, and thus could be used to remove epiphytic algae. The strong tolerance of young seedlings to high temperature, high irradiance, low salinity and desiccation found in this investigation supports the view that mass production of Hizikia seedlings should be performed in ambient light and temperature instead of in shaded greenhouse tanks.
Resumo:
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are Suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. fit this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble Culture were assessed at a temperature range of 10 similar to 30 degrees C. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30 degrees C for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25 degrees C for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 similar to 26 degrees C) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield. Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30 degrees C, similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36 degrees N was proposed according to these basic measurements.
Resumo:
Circadian growth rhythm of the juvenile sporophyte of the brown alga Undaria pirznatifida was measured with the computer-aided image analysis system in constant florescent white light under constant temperature (10 degrees C). The growth rhythm persisted for 4 d in constant light with a free-running period of 25. 6 h. Egg release from filamentous gametophytes pre-cultured in the light - dark regime was evaluated for six consecutive days at fixed time intervals in constant white light and 12 h light per day. Egg release rhythm persisted for 3 d in both regimes, indicating the endogenous nature. Temporal scale of egg release and gametogenesis in 18, 16, 12 and 8 h light per day were evaluated respectively using vegetatively propagated filamentous gametophytes. Egg release occurred 2 h after the onset of dark phase and peaked at midnight. Evaluation of the rates of oogonium formation, egg release or fertilization revealed no significant differences in four light-dark regimes, indicating; the great plasticity of sexual reproduction. No photoperiodic effect in gametogenesis in terms of oogonium formation and egg release was found, but fertilization in short days was significantly higher than in long days. Results of this investigation further confirmed the general occurrence of circadian rhythms in inter-tidal seaweed species.
Resumo:
Commercial cultivation of the dioecious brown macroalga Hizikia fusiformis (Harvey) Okamura in East Asia depends on the supply of young seedlings from regenerated holdfasts or from wild population. Recent development of synchronized release of male and female gametes in tumble culture provides a possibility of mass production of young seedlings via sexual reproduction. In this paper, we demonstrate that controlled fertilization can be efficiently realized in ambient light and temperature in a specially designed raceway tank in which the sperm-containing water has been recirculated. The effective fertilization time of eggs by sperm was found to be within six hours. Fast growth and development of the young seedlings relied on the presence of water currents. Velocity tests demonstrated that young seedlings of 2-3 mm in length could withstand a water current of 190 cm s(-1) stop without detachment. Culture experiments at 24 h postfertilization showed that elongation of both the seedlings and their rhizoids were not hampered by high irradiance up to 600 mu mol photons m(-2) stop s(-1) stop. However, growth was slightly retarded if cultured at a temperature of 16 degrees C compared to other culture temperatures of 22, 25 and 29 degrees C. No seedling detachment was observed after transfer of the young seedlings to raft cultivation in the sea after one and 1.5 months post-fertilization, indicating the feasibility of obtaining large quantity of seedlings in such a system.
Resumo:
Previous attempts to remove the brown tide organism, Aureococcus anophagefferens, through flocculation with clays have been unsuccessful, in spite of adopting concentrations and dispersal protocols that yielded excellent cell removal efficiency (RE>90%) with other species, so a study was planned to improve cell removal. Four modifications in clay preparation and dispersal were explored: 1) varying the salinity of the clay suspension; 2) mixing of the clay-cell suspension after clay addition; 3) varying of concentration of the initial clay stock; 4) pulsed loading of the clay slurry. The effect of salinity was dependent on the clay mineral type: phosphatic clay (IMC-P2) had a higher RE than kaolinite (H-DP) when seawater was used to disperse the clay, but H-DP removed cells more efficiently when suspended in distilled water prior to application. Mixing after dispersal approximately doubled RE for both clays compared to when the slurry was layered over the culture surface. Lowering the concentration of clay stock and pulsing the clay loading increased RE, regardless of mineral type. However, this increase was more apparent for clays dispersed in seawater than in distilled water. In general, application procedures that decrease the rate of self-aggregation among the clay particles and increase the collision frequency between clay particles and A. anophagefferens achieve higher cell removal efficiency. These empirical studies demonstrated that clays might be an important control option for the brown tide organism, given the proper attention to preparation, dispersal methods, environmental impacts, and the hydrodynamic properties of the system being treated. Implications for the treatment of brown tides in the field are discussed.
Resumo:
Six novel dibenzyl bromophenols (1-6) with different dimerization patterns and two propyl bromophenol derivatives (7 and 8), together with 11 known bromophenol derivatives, were isolated from the ethanolic extract of the brown alga Leathesia nana. On the basis of spectroscopic methods the structures of the new compounds were determined as 5,6'-diethyloxymethyl-3,4,2'-tribromo-2,3',4'-trihydroxydiphenyl ether (1), 2-(2,3-dibromo-4,5-dihydroxybenzyl)-3,5-dihydroxy-4-methoxybenzyl alcohol (2), 6-(2,3-dibromo-4,5dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (3), 9,10-dihydro-9,10-dimethoxy-3,4,7,8-tetrabromo-1,2,5,6-tetrahydroxyanthracene (4), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (5), rel-(4aS*,10aR*)-(+/-)-6,7-dibromo-4a-hydroxy-3,8-dihydroxymethyl-10a-methoxy- 1,4,4a, 10a-tetrahydrodibenzo[b,e][1,4]dioxin-1-one (6), (E)-2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propenal (7), and 2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)-1-propanol (8). Some compounds including 3 showed in vitro selective cytotoxicity against several human cancer cell lines. This is the first brown alga to be reported containing bromophenols.
Resumo:
Seven new cadinane sesquiterpenes, (-)-(1R,6S,7S,10R)-1-hydroxycadinan-3-en-5-one (1), (+)-(1R,5S,6R,7S, 10R)-cadinan-3-ene-1,5-diol (2), (+)-(1R,5R,6R,7S,10R)-cadinan-3-ene-1,5-diol (3), (+)-(1R,5S,6R,7S,10R)-cadinan-4(11)-ene-1,5-diol (4), (+)-(1R,5R,6R,7R,10R)-cadinan-4(11)-ene-1,5,12-triol (5), (-)-(1R,4R,5S,6R,7S, 10R)-cadinan-1,4,5-triol (6), and (-)-(1R,6R,7S,10R)-11-oxocadinan-4-en-1-ol (7), together with nine known compounds were isolated from the brown alga Dictyopteris divaricata. The structures of the new natural products, as well as their absolute configuration, were established by means of spectroscopic data including IR, HRMS, 1D and 2D NMR, single-crystal X-ray diffraction, and CD. All compounds were inactive against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), breast cancer (MCF-7), hepatoma (Bel7402), and colon cancer (HCT-8) cell lines.
Resumo:
Five minor sesquiterpenes (1-5) with two novel carbon skeletons, together with a minor new oplopane sesquiterpene ( 6), have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR, and CD, their structures including absolute configurations were assigned as (+)-(1R, 5S, 6S, 9R)3- acetyl-1-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-3-ene ( 1), (+)-(1R, 3S, 4S, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6- isopropyl-9-methylbicyclo[4.3.0] nonane (2), (+)-(1R, 3R, 4R, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6-isopropyl-9-methylbicyclo[ ;4.3.0] nonane ( 3), (+)-(1S, 2R, 6S, 9R)-1-hydroxy-2-(1-hydroxyethyl)-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (4), (-)-( 5S, 6R, 9S)-2-acetyl-5-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-1-en-3-one ( 5), and (-)-( 1S, 6S, 9R)- 4-acetyl- 1-hydroxy-6-isopropyl-9-methylbicyclo[ 4.3.0] non-4-en-3-one ( 6). Biogenetically, the carbon skeletons of 1-6 may be derived from the co-occurring cadinane skeleton by different ring contraction rearrangements. Compounds 1-6 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines.
Resumo:
Three bisnorsesquiterpenes (1-3) with novel carbon skeletons and a norsesquiterpene (4) have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR techniques, single-crystal X-ray diffraction, and CD, their structures including absolute configurations were proposed as (+)-1R,6S,9R)-1-hydroxyl-6-isopropyl-9-methylbicyclo[4.3.0]non-4-en3-one (1), (-)-(1S,6S,9R)-1-hydroxyl-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (2), (+)-(5S,6R,9S)5-hydroxyl-6-isopropyl-9-methylbicyclo [4.3.01 non-1-en-3-one (3), and (-)-(1R,7S,10R)-1-hydroxy-1lnorcadinan-5-en-4-one (4). Biogenetically, the carbon skeleton of 1-3 may be derived from the co-occurring cadinane skeleton by ring contraction and loss of two carbon units, and compound 4 from the oxidation of cadinane derivatives. Compounds 1-4 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), breast cancer (MCF-7), hepatoma (Bel7402), and colon cancer (HCT-8) cell lines.