892 resultados para Gonadotropins mrna levels
Resumo:
We have previously reported that concanavalin A (ConA)-induced MMP-2 activation involves both transcriptional and non-transcriptional mechanisms. Here we examined the effects of calcium influx on MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. The calcium ionophore ionomycin caused a dose-dependent inhibition of ConA-induced MMP-2 activation, but had no effect on MT1-MMP mRNA levels. However, Western analysis revealed an accumulation of pro-MT1-MMP (63 kDa), indicating that ionomycin blocked the conversion of pro-MT1-MMP protein to the active 60 kDa form. This suggests that increased calcium levels inhibit the processing of MT1-MMP. This finding may help to elucidate the mechanism(s) which regulates MT1-MMP activation.
Resumo:
Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.
Resumo:
Laminin has been shown to promote the malignant phenotype and the expression of certain laminin receptors has been correlated with the malignant character of the tumors. Here new cell lines were isolated from a human colon cancer cell line (LCC-C1) based on their adhesiveness to laminin. The laminin-adherent subclone formed large tumors in nude mice, whereas the laminin-nonadherent subclone failed to form sizable tumors. Only the laminin-adherent subclone adhered to laminin and invaded through Matrigel-coated filters. The adhesive and invasive ability of the cells was almost completely blocked by low concentrations (1.0 μg/ml) of anti-β1 integrin antibody. The amounts of total cellular β1 integrin protein were similar in the two subclones when compared by Western blot, and the mRNA levels also did not differ. The localization of β1 integrin laminin receptor varied in the two subclones; the laminin-adherent subclone showed a linear distribution along the cell-cell junctions, while the laminin-nonadherent subclone did not stain between the cells. Using laminin-Sepharose affinity chromatography, more β1 integrin was obtained from the laminin-adherent subclone. These findings suggest that alterations in the affinity of β1 integrin for laminin and in its membrane distribution might be involved in the increased tumorigenicity observed in colon cancer cells.
Resumo:
We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44highCD24low. Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.
Resumo:
We have previously demonstrated that fibroblasts and invasive human breast carcinoma (HBC) cells specifically activate matrix metalloproteinase- 2 (MMP-2) when cultured on 3-dimensional gels of type I collagen but not a range of other substrates. We show here the constitutive expression of membrane-type 1 (MT1)-MMP in both fibroblasts, and invasive HBC cell lines, that have fibroblastic attributes presumably acquired through an epithelial- to-mesenchymal transition (EMT). Treatment with collagen type I increased the steady-state MT1-MMP mRNA levels in these cells but did not induce either MT1-MMP expression or MMP-2 activation in noninvasive breast carcinoma cell lines, which retain epithelial features. Basal MT3-MMP mRNA expression had a pattern similar to that of MT1-MMP but was not up-regulated by collagen. MT4- MMP mRNA was seen in both invasive and noninvasive HBC cell lines and was also not collagen-regulated, and MT2-MMP mRNA was not detected in any of the HBC cell lines tested. These data support a role for MT1-MMP in the collagen- induced MMP-2-activation seen in these cells. In situ hybridization analysis of archival breast cancer specimens revealed a close parallel in expression of both collagen type I and MT1-MMP mRNA in peritumoral fibroblasts, which was correlated with aggressiveness of the lesion. Relatively high levels of expression of both mRNA species were seen in fibroblasts close to invasive tumor nests and, although only focally, in certain areas close to preinvasive tumors. These foci may represent hot spots for local degradation and invasive progression. Collectively, these results implicate MT1-MMP in collagen- stimulated MMP-2 activation and suggest that this mechanism may be employed in vivo by both tumor-associated fibroblasts and EMT-derived carcinoma cells to facilitate increased invasion and/or metastasis.
Resumo:
Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathway
Resumo:
INTRODUCTION: Galectin family members have been demonstrated to be abnormally expressed in cancer at the protein and mRNA level. This study investigated the levels of galectin proteins and mRNA expression in a large cohort of patients with papillary thyroid carcinoma and matched lymph node metastases with particular emphasis on galectin-1 and galectin-3. METHODS: mRNA expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were analysed by real-time polymerase chain reaction in 65 papillary thyroid carcinomas, 30 matched lymph nodes with metastatic papillary thyroid carcinoma and 5 non-cancer thyroid tissues. Galectin-1 and 3 protein expression was determined by immunohistochemistry in these samples. RESULTS: Significant expression differences in all tested galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were noted for mRNA in papillary thyroid carcinomas, with and without lymph node metastasis. Galectin-1 protein was more strongly expressed than galectin-3 protein in papillary thyroid carcinoma. Galectin-1 protein was found to be overexpressed in 32% of primary papillary thyroid carcinomas. A majority of lymph nodes with metastatic papillary thyroid carcinoma (53%) had significantly increased expression of galectin-1 protein, as did 47% of primaries with metastases. Galectin-1 mRNA levels were decreased in the vast majority (94%) of primary thyroid carcinomas that did not have metastases present. Galectin-3 protein levels were noted to be overexpressed in 15% of primary papillary thyroid carcinomas. In primary papillary thyroid carcinoma with lymph node metastases, 32% had over expression of galectin-3 protein. Overexpression of galectin-3 mRNA was noted in 58% of papillary thyroid carcinomas and 64% of lymph nodes bearing metastatic papillary thyroid carcinoma. Also, primary papillary thyroid carcinoma with lymph node metastases had significantly higher expression of galectin-3 mRNA compared to those without lymph node metastases. CONCLUSION: Galectin family members show altered expression at the mRNA level in papillary thyroid cancers. Overexpression of galectin-1 and 3 proteins were noted in papillary thyroid carcinoma with lymph node metastases. The results presented here demonstrated that galectin-1 and galectin-3 expression have important roles in clinical progression of papillary thyroid carcinoma.
Resumo:
The endothelin axis is a group of signaling molecules and their receptors that have been implicated in vascularization of cancers, with their expression being observed to change in different cancer types. In this research, we examined the expression of endothelin 1 and endothelin receptor A at the protein and messenger RNA (mRNA) levels in 123 papillary thyroid carcinomas and 40 matched lymph nodes with metastatic papillary thyroid carcinomas. We found altered endothelin axis mRNA expression in several clinicopathologic parameters with increased endothelin 1 expression in thyroid papillary carcinoma showing stromal calcification, cancers in men, and primary cancers with lymph node metastases. Increased endothelin receptor A mRNA expression was noted in the larger cancers. There is a significant correlation between expression of endothelin receptor A and endothelin 1 in papillary thyroid carcinoma. Both endothelin receptor A and endothelin 1 mRNA expressions were significantly higher in metastatic carcinoma in the lymph node than in primary thyroid cancer. The metastatic carcinoma in the lymph node had increased expression compared with matched primary thyroid carcinoma. Expressions of endothelin 1 and endothelin receptor A were also documented as being high at the protein level. Our results indicate that in thyroid cancer, endothelin 1 and endothelin receptor A are associated with growth in advanced stages and lymph node metastases, likely through known angiogenic linkages. Targeting the endothelin axis may be useful in planning angiogenesis therapy for thyroid cancer.
Resumo:
DNA methylation at promoter CpG islands (CGI) is an epigenetic modification associated with inappropriate gene silencing in multiple tumor types. In the absence of a human pituitary tumor cell line, small interfering RNA-mediated knockdown of the maintenance methyltransferase DNA methyltransferase (cytosine 5)-1 (Dnmt1) was used in the murine pituitary adenoma cell line AtT-20. Sustained knockdown induced reexpression of the fully methylated and normally imprinted gene neuronatin (Nnat) in a time-dependent manner. Combined bisulfite restriction analysis (COBRA) revealed that reexpression of Nnat was associated with partial CGI demethylation, which was also observed at the H19 differentially methylated region. Subsequent genome-wide microarray analysis identified 91 genes that were significantly differentially expressed in Dnmt1 knockdown cells (10% false discovery rate). The analysis showed that genes associated with the induction of apoptosis, signal transduction, and developmental processes were significantly overrepresented in this list (P < 0.05). Following validation by reverse transcription-PCR and detection of inappropriate CGI methylation by COBRA, four genes (ICAM1, NNAT, RUNX1, and S100A10) were analyzed in primary human pituitary tumors, each displaying significantly reduced mRNA levels relative to normal pituitary (P < 0.05). For two of these genes, NNAT and S100A10, decreased expression was associated with increased promoter CGI methylation. Induced expression of Nnat in stable transfected AtT-20 cells inhibited cell proliferation. To our knowledge, this is the first report of array-based "epigenetic unmasking" in combination with Dnmt1 knockdown and reveals the potential of this strategy toward identifying genes silenced by epigenetic mechanisms across species boundaries.
Resumo:
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Resumo:
BACKGROUND Estradiol (E-2) is an important promoter of the growth of both eutopic and ectopic endometrium. The findings with regard to the expression and activity of steroidogenic enzymes in endometrium of controls, in endometrium of endometriosis patients and in endometriotic lesions are not consistent. METHODS In this study, we have looked at the mRNA expression and protein levels of a range of steroidogenic enzymes [aromatase, 17 beta-hydroxysteroid dehydrogenases (17 beta-HSD) type 1, 2 and 4, estrogen sulfotransferase (EST) and steroid sulfatase (STS)l in eutopic and ectopic endometrium of patients (n = 14) with deep-infiltrative endometriosis as well as in disease-free endometrium (n = 48) using real-time PCR and immunocytochemistry. In addition, we evaluated their menstrual cycle-related expression patterns, and investigated their steroid responsiveness in explant cultures. RESULTS Aromatase and 17 beta-HSD type 1 mRNA levels were extremely low in normal human endometrium, while mRNAs for types 2 and 4 17 beta-HSD, EST and STS were readily detectable. Only 17 beta-HSD type 2 and EST genes showed sensitivity to progesterone in normal endometrium. Types 1 and 2 17 beta-HSD and STS protein was detected in normal endometrium using new polyclonal antibodies. CONCLUSIONS In endometriosis lesions, the balance is tilted in favor of enzymes producing E2. This is due to a suppression of types 2 and 4 17 beta-HSD, and an increased expression of aromatase and type 1 17 beta-HSD in ectopic endometrium.
Resumo:
BACKGROUND: The general concept that haemoglobin is only a carrier protein for oxygen and carbon dioxide is challenged since recent studies have shown haemoglobin expression in non-erythroid cells and the protection of haemoglobin against oxidative and nitrosative stress. Using microarrays, we previously showed expression of haemoglobins alpha, beta, delta and gamma and the haeme metabolizing enzyme, haeme oxygenase (HO)-1 in human endometrium. METHODS: Using real-time quantitative PCR, haemoglobin alpha, beta, delta and gamma, and HO-1 mRNA levels were assessed throughout the menstrual cycle (n = 30 women). Haemoglobin and HO-1 protein levels in the human endometrium were assessed with immunohistochemistry. For steroid responsiveness, menstrual and late proliferative-phase endometrial explants were cultured for 24 h in the presence of vehicle (0.1% ethanol), estradiol (17 beta-E-2, 1 nM), progestin (Org 2058, 1 nM) or 17 beta-E-2+Org 2058 (1 nM each). RESULTS: All haemoglobins and the HO-1 were expressed in normal human endometrium. Haemoglobin mRNA and protein expression did not vary significantly during the menstrual cycle. Explant culture with Org 2058 or 17 beta-E-2+Org 2058 increased haemoglobin gamma mRNA expression (P < 0.05). HO-1 mRNA levels, and not protein levels, were significantly higher during the menstrual (M)-phase of the cycle (P < 0.05), and were down-regulated by Org 2058 in M-phase explants and by 17 beta-E-2+Org 2058 in LP-phase explants, versus control (P < 0.05). CONCLUSIONS: The haemoglobin-HO-1 system may be required to ensure adequate regulation of the bioavailability of haeme, iron and oxygen in human endometrium.
Resumo:
Prostate-specific antigen (PSA) and the related kallikrein family of serine proteases are current or emerging biomarkers for prostate cancer detection and progression. Kallikrein 4 (KLK4/hK4) is of particular interest, as KLK4 mRNA has been shown to be elevated in prostate cancer. In this study, we now show that the comparative expression of hK4 protein in prostate cancer tissues, compared with benign glands, is greater than that of PSA and kallikrein 2 (KLK2/hK2), suggesting that hK4 may play an important functional role in prostate cancer progression in addition to its biomarker potential. To examine the roles that hK4, as well as PSA and hK2, play in processes associated with progression, these kallikreins were separately transfected into the PC-3 prostate cancer cell line, and the consequence of their stable transfection was investigated. PC-3 cells expressing hK4 had a decreased growth rate, but no changes in cell proliferation were observed in the cells expressing PSA or hK2. hK4 and PSA, but not hK2, induced a 2.4-fold and 1.7-fold respective increase, in cellular migration, but not invasion, through Matrigel, a synthetic extracellular matrix. We hypothesised that this increase in motility displayed by the hK4 and PSA-expressing PC-3 cells may be related to the observed change in structure in these cells from a typical rounded epithelial-like cell to a spindle-shaped, more mesenchymal-like cell, with compromised adhesion to the culture surface. Thus, the expression of E-cadherin and vimentin, both associated with an epithelial-mesenchymal transition (EMT), was investigated. E-cadherin protein was lost and mRNA levels were significantly decreased in PC-3 cells expressing hK4 and PSA (10-fold and 7-fold respectively), suggesting transcriptional repression of E-cadherin, while the expression of vimentin was increased in these cells. The loss of E-cadherin and associated increase in vimentin are indicative of EMT and provides compelling evidence that hK4, in particular, and PSA have a functional role in the progression of prostate cancer through their promotion of tumour cell migration.
Resumo:
The main genetic determinant of soluble interleukin 6 receptor (sIL-6R) levels is the missense variant rs2228145 that maps to the cleavage site of IL-6R. For each Ala allele, sIL-6R serum levels increase by ∼20 ng ml -1 and asthma risk by 1.09-fold. However, this variant does not explain the total heritability for sIL-6R levels. Additional independent variants in IL6R may therefore contribute to variation in sIL-6R levels and influence asthma risk. We imputed 471 variants in IL6R and tested these for association with sIL-6R serum levels in 360 individuals. An intronic variant (rs12083537) was associated with sIL-6R levels independently of rs4129267 (P=0.0005), a proxy single-nucleotide polymorphism for rs2228145. A significant and consistent association for rs12083537 was observed in a replication panel of 354 individuals (P=0.033). Each rs12083537:A allele increased sIL-6R serum levels by 2.4 ng ml -1. Analysis of mRNA levels in two cohorts did not identify significant associations between rs12083537 and IL6R transcription levels. On the other hand, results from 16 705 asthmatics and 30 809 controls showed that the rs12083537:A allele increased asthma risk by 1.04-fold (P=0.0419). Genetic risk scores based on IL6R regulatory variants may prove useful in explaining variation in clinical response to tocilizumab, an anti-IL-6R monoclonal antibody.
Resumo:
The oncogene MDM4, also known as MDMX or HDMX, contributes to cancer susceptibility and progression through its capacity to negatively regulate a range of genes with tumour-suppressive functions. As part of a recent genome-wide association study it was determined that the A-allele of the rs4245739 SNP (A>C), located in the 3'-UTR of MDM4, is associated with an increased risk of prostate cancer. Computational predictions revealed that the rs4245739 SNP is located within a predicted binding site for three microRNAs (miRNAs): miR-191-5p, miR-887 and miR-3669. Herein, we show using reporter gene assays and endogenous MDM4 expression analyses that miR-191-5p and miR-887 have a specific affinity for the rs4245739 SNP C-allele in prostate cancer. These miRNAs do not affect MDM4 mRNA levels, rather they inhibit its translation in C-allele-containing PC3 cells but not in LNCaP cells homozygous for the A-allele. By analysing gene expression datasets from patient cohorts, we found that MDM4 is associated with metastasis and prostate cancer progression and that targeting this gene with miR-191-5p or miR-887 decreases in PC3 cell viability. This study is the first, to our knowledge, to demonstrate regulation of the MDM4 rs4245739 SNP C-allele by two miRNAs in prostate cancer, and thereby to identify a mechanism by which the MDM4 rs4245739 SNP A-allele may be associated with an increased risk for prostate cancer.