957 resultados para Global localization problem
Resumo:
High-level parallel languages offer a simple way for application programmers to specify parallelism in a form that easily scales with problem size, leaving the scheduling of the tasks onto processors to be performed at runtime. Therefore, if the underlying system cannot efficiently execute those applications on the available cores, the benefits will be lost. In this paper, we consider how to schedule highly heterogenous parallel applications that require real-time performance guarantees on multicore processors. The paper proposes a novel scheduling approach that combines the global Earliest Deadline First (EDF) scheduler with a priority-aware work-stealing load balancing scheme, which enables parallel realtime tasks to be executed on more than one processor at a given time instant. Experimental results demonstrate the better scalability and lower scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.
Resumo:
Consider the problem of scheduling real-time tasks on a multiprocessor with the goal of meeting deadlines. Tasks arrive sporadically and have implicit deadlines, that is, the deadline of a task is equal to its minimum inter-arrival time. Consider this problem to be solved with global static-priority scheduling. We present a priority-assignment scheme with the property that if at most 38% of the processing capacity is requested then all deadlines are met.
Resumo:
In this paper a new PCA-based positioning sensor and localization system for mobile robots to operate in unstructured environments (e. g. industry, services, domestic ...) is proposed and experimentally validated. The inexpensive positioning system resorts to principal component analysis (PCA) of images acquired by a video camera installed onboard, looking upwards to the ceiling. This solution has the advantage of avoiding the need of selecting and extracting features. The principal components of the acquired images are compared with previously registered images, stored in a reduced onboard image database, and the position measured is fused with odometry data. The optimal estimates of position and slippage are provided by Kalman filters, with global stable error dynamics. The experimental validation reported in this work focuses on the results of a set of experiments carried out in a real environment, where the robot travels along a lawn-mower trajectory. A small position error estimate with bounded co-variance was always observed, for arbitrarily long experiments, and slippage was estimated accurately in real time.
Resumo:
Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. In order to assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image with those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, in this paper we compare several candidate combiners with respect to their performance in the visual localization task. For this evaluation, we selected the most popular methods in the class of non-trained combiners, namely the sum rule and product rule. A deeper insight into the potential of these combiners is provided through a discriminativity analysis involving the algebraic rules and two extensions of these methods: the threshold, as well as the weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. Furthermore, we address the process of constructing a model of the environment by describing how the model granularity impacts upon performance. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance, confirming the general agreement on the robustness of this rule in other classification problems. The voting method, whilst competitive with the product rule in its standard form, is shown to be outperformed by its modified versions.
Resumo:
Technology is present in almost every simple aspect of the people’s daily life. As an instance, let us refer to the smartphone. This device is usually equipped with a GPS modulewhich may be used as an orientation system, if it carries the right functionalities. The problem is that these applications may be complex to operate and may not be within the bounds of everybody. Therefore, the main goal here is to develop an orientation system that may help people with cognitive disabilities in their day-to-day journeys, when the caregivers are absent. On the other hand, to keep paid helpers aware of the current location of the disable people, it will be also considered a localization system. Knowing their current locations, caregiversmay engage in others activities without neglecting their prime work, and, at the same time, turning people with cognitive disabilities more independent.
Resumo:
This paper presents a step count algorithm designed to work in real-time using low computational power. This proposal is our first step for the development of an indoor navigation system, based on Pedestrian Dead Reckoning (PDR). We present two approaches to solve this problem and compare them based in their error on step counting, as well as, the capability of their use in a real time system.
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
This work studies the combination of safe and probabilistic reasoning through the hybridization of Monte Carlo integration techniques with continuous constraint programming. In continuous constraint programming there are variables ranging over continuous domains (represented as intervals) together with constraints over them (relations between variables) and the goal is to find values for those variables that satisfy all the constraints (consistent scenarios). Constraint programming “branch-and-prune” algorithms produce safe enclosures of all consistent scenarios. Special proposed algorithms for probabilistic constraint reasoning compute the probability of sets of consistent scenarios which imply the calculation of an integral over these sets (quadrature). In this work we propose to extend the “branch-and-prune” algorithms with Monte Carlo integration techniques to compute such probabilities. This approach can be useful in robotics for localization problems. Traditional approaches are based on probabilistic techniques that search the most likely scenario, which may not satisfy the model constraints. We show how to apply our approach in order to cope with this problem and provide functionality in real time.
Resumo:
Positioning technologies are becoming ubiquitous and are being used more and more frequently for supporting a large variety of applica- tions. For outdoor applications, global navigation satellite systems (GNSSs), such as the global positioning system (GPS), are the most common and popular choice because of their wide coverage. GPS is also augmented with network-based systems that exploit existing wireless and mobile networks for providing positioning functions where GPS is not available or to save energy in battery-powered devices. Indoors, GNSSs are not a viable solution, but many applications require very accurate, fast, and exible positioning, tracking, and navigation functions. These and other requirements have stim- ulated research activities, in both industry and academia, where a variety of fundamental principles, techniques, and sensors are being integrated to provide positioning functions to many applications. The large majority of positioning technologies is for indoor environments, and most of the existing commercial products have been developed for use in of ce buildings, airports, shopping malls, factory plants, and similar spaces. There are, however, other spaces where positioning, tracking, and navigation systems play a central role in safety and in rescue operations, as well as in supporting speci c activities or for scienti c research activities in other elds. Among those spaces are underground tunnels, mines, and even underwater wells and caves. This chapter describes the research efforts over the past few years that have been put into the development of positioning systems for underground tun- nels, with particular emphasis in the case of the Large Hadron Collider (LHC) at CERN (the European Organization for Nuclear Research), where localiza- tion aims at enabling more automatic and unmanned radiation surveys. Examples of positioning and localization systems that have been devel- oped in the past few years for underground facilities are presented in the fol- lowing section, together with a brief characterization of those spaces’ special conditions and the requirements of some of the most common applications. Section 5.2 provides a short overview of some of the most representative research efforts that are currently being carried out by many research teams around the world. In addition, some of the fundamental principles and tech- niques are identi ed, such as the use of leaky coaxial cables, as used at the LHC. In Section 5.3, we introduce the speci c environment of the LHC and de ne the positioning requirements for the envisaged application. This is followed by a detailed description of our approach and the results that have been achieved so far. Some last comments and remarks are presented in a nal section.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.
Resumo:
The Electromagnetism-like (EM) algorithm is a population- based stochastic global optimization algorithm that uses an attraction- repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab en- vironment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results con rm that our imple- mentation is a competitive alternative both in term of numerical results and performance. Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.