860 resultados para Global climate change
Resumo:
Since it is very toxic and accumulates in organisms, particularly in fish, mercury is a very important pollutant and one of the most studies. And this concern over the toxicity and human health risks of mercury has prompted efforts to regulate anthropogenic emissions. As mercury pollution problem is getting increasingly serious, we are curious about how serious this problem will be in the future. What is more, how the climate change in the future will affect the mercury concentration in the atmosphere. So we investigate the impact of climate change on mercury concentration in the atmosphere. We focus on the comparison between the mercury data for year 2000 and for year 2050. The GEOS-Chem model shows that the mercury concentrations for all tracers (1 to 3), elemental mercury (Hg(0)), divalent mercury (Hg(II)) and primary particulate mercury (Hg(P)) have differences between 2000 and 2050 in most regions over the world. From the model results, we can see the climate change from 2000 to 2050 would decrease Hg(0) surface concentration in most of the world. The driving factors of Hg(0) surface concentration changes are natural emissions(ocean and vegetation) and the transformation reactions between Hg(0) and Hg(II). The climate change from 2000 to 2050 would increase Hg(II) surface concentration in most of mid-latitude continental parts of the world while decreasing Hg(II) surface concentration in most of high-latitude part of the world. The driving factors of Hg(II) surface concentration changes is deposition amount change (majorly wet deposition) from 2000 to 2050 and the transformation reactions between Hg(0) and Hg(II). Climate change would increase Hg(P) concentration in most of mid-latitude area of the world and meanwhile decrease Hg(P) concentration in most of high-latitude regions of the world. For the Hg(P) concentration changes, the major driving factor is the deposition amount change (mainly wet deposition) from 2000 to 2050.
Resumo:
The end of the Last Glacial Maximum (Termination I), roughly 20 thousand years ago (ka), was marked by cooling in the Northern Hemisphere, a weakening of the Asian monsoon, a rise in atmospheric CO2 concentrations and warming over Antarctica. The sequence of events associated with the previous glacial–interglacial transition (Termination II), roughly 136 ka, is less well constrained. Here we present high-resolution records of atmospheric CO2 concentrations and isotopic composition of N2—an atmospheric temperature proxy—from air bubbles in the EPICA Dome C ice core that span Termination II. We find that atmospheric CO2 concentrations and Antarctic temperature started increasing in phase around 136 ka, but in a second phase of Termination II, from 130.5 to 129 ka, the rise in atmospheric CO2 concentrations lagged that of Antarctic temperature unequivocally. We suggest that during this second phase, the intensification of the low-latitude hydrological cycle resulted in the development of a CO2 sink, which counteracted the CO2 outgassing from the Southern Hemisphere oceans over this period.
Resumo:
Mountains are among the regions most affected by climate change. The implications of climate change will reach far beyond mountain areas, as the contributions in the present publication prepared for the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 20) in Lima 2014 show. Themes discussed are water, glaciers and permafrost, hazards, biodiversity, food security and economy. The case studies included show that concrete adaptive action has been taken in many mountain areas of the world. The publication concludes with a series of recommendations for sustainable mountain development in the face of climate change.
Resumo:
The atmosphere displays modes of variability whose structures exhibit a strong longitudinally symmetric (annular) component that extends from the surface to the stratosphere in middle and high latitudes of both hemispheres. In the past 30 years, these modes have exhibited trends that seem larger than their natural background variability, and may be related to human influences on stratospheric ozone and/or atmospheric greenhouse gas concentrations. The pattern of climate trends during the past few decades is marked by rapid cooling and ozone depletion in the polar lower stratosphere of both hemispheres, coupled with an increasing strength of the wintertime westerly polar vortex and a poleward shift of the westerly wind belt at the earth's surface. Annular modes of variability are fundamentally a result of internal dynamical feedbacks within the climate system, and as such can show a large response to rather modest external forcing. The dynamics and thermodynamics of these modes are such that strong synergistic interactions between stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible for the pronounced changes in tropospheric and stratospheric climate observed during the past few decades. If these trends continue, they could have important implications for the climate of the 21st century.
Resumo:
This dissertation investigates China’s recent shift in its climate change policy with a refined discourse approach. Methodologically, by adopting a neo-Gramscian notion of hegemony, a generative definition of discourse and an ontological pluralist position, the study constructs a theoretical framework named “discursive hegemony” that identifies the “social forces” for enabling social change and focuses on the role of discursive mechanisms via which the forces operate and produce effects. The key empirical finding of this study was that it was a co-evolution of conditions that shaped the outcome as China’s climate policy shift. In examining the case, a before-after within-case comparison was designed to analyze the variations in the material, institutional, and ideational conditions, with methods including interviews, conventional narrative/text analysis and descriptive statistics. Specifically, changes in energy use, the structure of decision-making body, and the narratives about sustainable development reflected how the above three types of social force processed in China in the first few years of the 21st century, causing the economic development agenda to absorb the climate issue, and turning the policy frame for the latter from mainly a diplomatic matter to a potential opportunity for better-quality growth. With the discursive operation of the “Science-based development”, China’s energy policy has been a good example of the Chinese understanding of sustainability characterized by economic primacy, ecological viability and social green-engineering. This way of discursive evolution, however, is a double-edged sword that has pushed forward some fast, top-down mitigation measures on the one hand, but has also created and will likely continue creating social and ecological havoc on the other hand. The study makes two major contributions. First and on the empirical level, because China is an international actor that was not expected to cooperate on the climate issue according to major IR theories, this study would add one critical case to the studies on global (environmental) governance and the ideational approach in the IR discipline. Second and on the theory-building level, the model of discursive hegemony can be a causally deeper mode of explanation because it traces the process of co-evolution of social forces.
Resumo:
While the topic of climate change is controversial, the world needs to take a precautionary approach to reduce carbon dioxide emissions. With growing populations and increasing energy demands, solutions to cleaner energy need to be developed and implemented. In order to successfully reduce carbon dioxide emissions, a global carbon pricing policy needs to be developed that includes all countries and allows each region to utilize the best clean energy technology options along with economic incentives that will be the most effective. The research conducted in this project validates the hypothesis that placing a monetary price on carbon will allow natural, technological, and financial resources to come together to implement a feasible energy solution that will reduce global carbon dioxide emissions.
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.
Resumo:
There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
Resumo:
The impacts of climate change in the potential distribution and relative abundance of a C3 shrubby vine, Cryptostegia grandiflora, were investigated using the CLIMEX modelling package. Based upon its current naturalised distribution, C. grandiflora appears to occupy only a small fraction of its potential distribution in Australia under current climatic conditions; mostly in apparently sub-optimal habitat. The potential distribution of C. grandiflora is sensitive towards changes in climate and atmospheric chemistry in the expected range of this century, particularly those that result in increased temperature and water use efficiency. Climate change is likely to increase the potential distribution and abundance of the plant, further increasing the area at risk of invasion, and threatening the viability of current control strategies markedly. By identifying areas at risk of invasion, and vulnerabilities of control strategies, this analysis demonstrates the utility of climate models for providing information suitable to help formulate large-scale, long-term strategic plans for controlling biotic invasions. The effects of climate change upon the potential distribution of C. grandiflora are sufficiently great that strategic control plans for biotic invasions should routinely include their consideration. Whilst the effect of climate change upon the efficacy of introduced biological control agents remain unknown, their possible effect in the potential distribution of C. grandiflora will likely depend not only upon their effects on the population dynamics of C. grandiflora, but also on the gradient of climatic suitability adjacent to each segment of the range boundary.