914 resultados para Glassy carbon electrode
Resumo:
This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of hydrazine (N2H4) on a glassy carbon electrode (GC) modified by monolayer and polymer films of cobalt protoporphyrin dimethyl ester (CoPP) has been studied. Both the monolayer and polymer films of CoPP are very active to the anodic oxidation of N2H4. The activity of CoPP for the anodic oxidation of N2H4 is dependent on the pH of the solution, and the thickness of polymerized CoPP film. The oxidation kinetics were examined by methods of cyclic voltammetry, rotating disc electrodes and steady-state polarization measurement.
Resumo:
In this work, a new method for the simultaneous determination of Pb(II) and Cd(II) on the multiwalled carbon nanotubes (MWNT)-Nafion-bismuth modified glassy carbon electrode (GCE) using square-wave anodic stripping voltammetry has been studied. Scanning electron microscopy was used to investigate the characteristics of the MWNT-Nafion-bismuth modified GCE.
Resumo:
A simple and rapid method for morphine detection has been described based on electrochemical pretreatment of glassy carbon electrode (GCE) which was treated by anodic oxidation at 1.75 V, following potential cycling in the potential range from 0 V to 1.0 V vs. Ag vertical bar AgCl reference electrode. The sensitivity for morphine detection was improved greatly and the detection limit was 0.2 mu M. The reproducibility of the voltammetric measurements was usually less than 3% RSD for six replicate measurements. Moreover, this method could readily discriminate morphine from codeine. And an electrochemical detection of morphine in spiked urine sample was succeeded with satisfactory results.
Resumo:
Diaminoalkanes (NH2(CH2)(n)NH2, n = 7,10,12) were grafted onto a glassy carbon electrode (GCE) surface by amino cation radical formed during electrooxidation of amino group. The presence of diamine grafted layer at the GCE is demonstrated by X-ray photoelectron spectroscopy. The effect of the grafted layer at the GCE surface on the redox responses of Ru(NH3)(6)(3+) and Fe(CN)(6)(3-) redox probes has been investigated. Electrochemical impedance experiments indicate that the kinetics of electron transfer are slowed down when the scan rate taken to modify the GCE is low, and that diaminoalkane with longer alkyl-chain used has higher blocking characteristics. The amine-functionalized GCE is versatile not only to further covalently immobilize ferrocene acetic acid via carbodiimide coupling, but also as a charge-rich substrate to successfully adsorb heteropolyanion P2W18 in acidic solution by electrostatic interaction. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy measurement proves the presence of 4-carboxylphenylamine monolayer on the GCE. The redox responses of various electroactive probes were investigated on the 4-ABA-modified GCE. Electron transfer to Fe(CN)(6)(3-) in solutions of various pHs was studied by both cyclic voltammetry and electrochemical impedance analysis on the modified electrode. Changes in the solution pH value result in the variation of the terminal group charge state, based on which surface pK(a) values are estimated. The 4-ABA-modified GCE was used as a suitable charged substrate to fabricate polyoxometalates-consisting (POM-consisting) monolayer and multilayer films through layer-by-layer assembly based on electrostatic attraction. Cyclic voltammetry shows the uniform growth of these three-dimensional multilayer films. Taking K10H3[Pr-(SiMo7W4O39)(2)]. H2O (abbreviated as Pr(SiMo7W4)(2)), for example, the preparation and electrochemical behavior of its monolayer and multilayer film had been investigated in detail. This modification strategy is proven to be a general one suitable for anchoring many kinds of POMs on the 4-ABA-modified GCE.
Resumo:
The anodic voltammetric behavior of anaesthetic tetracine and its application were studied. In 0.1 mol/L HClO4 solution, the potential of anodic peak for tetracine is 1.04 V(vs. Ag/AgCl) at a glassy carbon electrode. A linear relationship between the peak height and the concentration of tetracine in the range of 5 x 10(-4) similar to 1 x 10(-1) g/L was obtained. The peak current decreases with the decreasing acidity of the solution. the mehtod has been used for the direct determination of tetracine in injections. The average recoveries of tetracine in urine samples were 98.5%. The mechanism of the electrode reaction was also discussed.
Resumo:
In this paper, an organic-inorganic composite film of heteropolyanion was Formed by attaching a Keggin-type heteropolyanion, SiW12O404-, on carbon electrode surface derivatized by 4-aminophenyl monolayer. The composite film thus grafted on carbon electrode surface has good stability because of the ionic bonding character between SiW12O404- and surface aminophenyl groups. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used to characterize the composite film. Compared with SiW12O404- electrodeposited on a bare glassy carbon electrode (GCE), the composite film gives three more sharp and well-defined redox couples attributed to two one- and two-electron processes, and the analyses of the voltammograms of SiW12O404- anion in the composite film modified on GCE shows that its surface coverage is close to a closest packing monolayer. STM characterization shows that a two-dimensional order heteropolyanion monolayer was formed on HOPG substrate. The composite film provides a favorable environment for electron and proton transfer between SiW12O404- ion and electrode surface, which may make it suitable for various applications in sensors and microelectronics devices.
Resumo:
A differential pulse voltammetric sensor for the determination of tamsulosin hydrochloride (TAM) using multiwalled carbon nanotubes (MWNTs)–Nafion-modified glassy carbon electrode (GCE) has been developed. MWNTs were dispersed in water with the help of Nafion and were used to modify the surface of GCE via solvent evaporation. At MWNT-modified electrode, TAM gave a well-defined oxidation peak at a potential of 1084 mV in 0.1 M acetate buffer solution of pH 5. Compared to the bare electrode, the peak current of TAM showed a marked increase and the peak potential showed a negative deviation. The determination conditions, such as the amount of MWNT–Nafion suspension, pH of the supporting electrolyte and scan rate, were optimised. Under optimum conditions, the oxidation peak current was proportional to the concentration of TAM in the range 1 × 1023 M–3 × 1027 M with a detection limit of 9.8 × 1028 M. The developed sensor showed good stability, selectivity and was successfully used for the determination of TAM in pharmaceutical formulations and urine samples
Resumo:
A film of poly-L-lysine (PLL) adheres better to the surface of a glassy carbon electrode when the PLL is partially cross-linked by means of glutaraldehyde. A film composition of 97.5% PLL/2.5% glutaraldehyde gives good adhesion and retains the anionic exchange capability of the PLL. The performance of the film was tested with hexacyanoferrate(III) using electrochemical and nonelectrochemical accumulation.
Resumo:
A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
A wall-jet cell incorporating a carbon fibre array ring/glassy-carbon disk electrode has been constructed, and characterized by the cyclic voltammetry and flow-injection techniques. The ring (composed of several microdisks) and glassy-carbon disk electrode, can be used separately for different purposes, e.g., detection in solution without a supporting electrolyte, collection/shielding detection with dual-electrode and voltammetric/amperometric detection with series dual-electrode. The electrode shows better collection and shielding effects than usual ring-disk electrode in quiescent solution and the series dual-electrode in a thin-layer flow-through cell. The detection limit at the ring electrode is comparable with that at a conventional-size electrode, and has been used in the mobile phase without a supporting electrolyte, proving to be a promising detector for normal-phase liquid chromatography.
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
In this work, electrochemical oxidation of albendazole (ABZ) was carried out using a glassy carbon-rotating disk electrode. Development of electroanalytical methodology for ABZ quantification in pharmaceutical formulations was also proposed by using linear sweep voltammetric technique. Electrochemical oxidation is observed for ABZ at E 1/2 = 0.99:V vs. Ag/AgCl sat, when an anodic wave is observed. Kinetic parameters obtained for ABZ oxidation exhibited a standard heterogeneous rate constant for the electrodic process equal to (1.51 ± 0.07) ± 10 -5:cm:s -1, with a αn a value equal to 0.76. Limiting current dependence against ABZ concentration exhibited linearity on 5.0 ± 10 -5 to 1.0 ± 10 -2:mol:l -1 range, being obtained a detection limit of 2.4 ± 10 -5:mol:l -1. Proposed methodology was applied to ABZ quantification in pharmaceutical formulations. © 2005 Elsevier SAS. All rights reserved.