942 resultados para Genotyping uncertainty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutrophication of the Baltic Sea is a serious problem. This thesis estimates the benefit to Finns from reduced eutrophication in the Gulf of Finland, the most eutrophied part of the Baltic Sea, by applying the choice experiment method, which belongs to the family of stated preference methods. Because stated preference methods have been subject to criticism, e.g., due to their hypothetical survey context, this thesis contributes to the discussion by studying two anomalies that may lead to biased welfare estimates: respondent uncertainty and preference discontinuity. The former refers to the difficulty of stating one s preferences for an environmental good in a hypothetical context. The latter implies a departure from the continuity assumption of conventional consumer theory, which forms the basis for the method and the analysis. In the three essays of the thesis, discrete choice data are analyzed with the multinomial logit and mixed logit models. On average, Finns are willing to contribute to the water quality improvement. The probability for willingness increases with residential or recreational contact with the gulf, higher than average income, younger than average age, and the absence of dependent children in the household. On average, for Finns the relatively most important characteristic of water quality is water clarity followed by the desire for fewer occurrences of blue-green algae. For future nutrient reduction scenarios, the annual mean household willingness to pay estimates range from 271 to 448 and the aggregate welfare estimates for Finns range from 28 billion to 54 billion euros, depending on the model and the intensity of the reduction. Out of the respondents (N=726), 72.1% state in a follow-up question that they are either Certain or Quite certain about their answer when choosing the preferred alternative in the experiment. Based on the analysis of other follow-up questions and another sample (N=307), 10.4% of the respondents are identified as potentially having discontinuous preferences. In relation to both anomalies, the respondent- and questionnaire-specific variables are found among the underlying causes and a departure from standard analysis may improve the model fit and the efficiency of estimates, depending on the chosen modeling approach. The introduction of uncertainty about the future state of the Gulf increases the acceptance of the valuation scenario which may indicate an increased credibility of a proposed scenario. In conclusion, modeling preference heterogeneity is an essential part of the analysis of discrete choice data. The results regarding uncertainty in stating one s preferences and non-standard choice behavior are promising: accounting for these anomalies in the analysis may improve the precision of the estimates of benefit from reduced eutrophication in the Gulf of Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of variable-number tandem repeats (VNTR) genotyping of Mycobacterium avium subsp. paratuberculosis isolates to assist in investigating incidents of bovine Johne’s disease in a low-prevalence region of Australia is described in the current study. Isolates from a response to detection of bovine Johne’s disease in Queensland were compared with strains from national and international sources. The tandem application of mycobacterial interspersed repetitive unit (MIRU) and multilocus short sequence repeats (MLSSR) genotyping identified 2 strains, 1 that infected cattle on multiple properties with trace-forward histories from a common infected property, and 1 genotypically different strain recovered from a single property. The former strain showed an identical genotype to an isolate from India. Neither strain showed a genotypic link to regions of Australia with a higher prevalence of the disease. Genotyping has indicated incursions from 2 independent sources. This intelligence has informed investigations into potential routes of entry and the soundness of ongoing control measures, and supported strategy and policy decisions regarding management of Mycobacterium avium subsp. paratuberculosis incursions for Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing build-up and wash-off process uncertainty is important for accurate interpretation of model outcomes to facilitate informed decision making for developing effective stormwater pollution mitigation strategies. Uncertainty inherent to pollutant build-up and wash-off processes influences the variations in pollutant loads entrained in stormwater runoff from urban catchments. However, build-up and wash-off predictions from stormwater quality models do not adequately represent such variations due to poor characterisation of the variability of these processes in mathematical models. The changes to the mathematical form of current models with the incorporation of process variability, facilitates accounting for process uncertainty without significantly affecting the model prediction performance. Moreover, the investigation of uncertainty propagation from build-up to wash-off confirmed that uncertainty in build-up process significantly influences wash-off process uncertainty. Specifically, the behaviour of particles <150µm during build-up primarily influences uncertainty propagation, resulting in appreciable variations in the pollutant load and composition during a wash-off event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a recent spate of high profile infrastructure cost overruns in Australia and internationally. This is just the tip of a longer-term and more deeply-seated problem with initial budget estimating practice, well recognised in both academic research and industry reviews: the problem of uncertainty. A case study of the Sydney Opera House is used to identify and illustrate the key causal factors and system dynamics of cost overruns. It is conventionally the role of risk management to deal with such uncertainty, but the type and extent of the uncertainty involved in complex projects is shown to render established risk management techniques ineffective. This paper considers a radical advance on current budget estimating practice which involves a particular approach to statistical modelling complemented by explicit training in estimating practice. The statistical modelling approach combines the probability management techniques of Savage, which operate on actual distributions of values rather than flawed representations of distributions, and the data pooling technique of Skitmore, where the size of the reference set is optimised. Estimating training employs particular calibration development methods pioneered by Hubbard, which reduce the bias of experts caused by over-confidence and improve the consistency of subjective decision-making. A new framework for initial budget estimating practice is developed based on the combined statistical and training methods, with each technique being explained and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible futurescenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India,which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an ethnographic study, in the field of medical anthropology, of village life among farmers in southwest Finland. It is based on 12 months of field work conducted 2002-2003 in a coastal village. The study discusses how social and cultural change affects the life of farmers, how they experience it and how they act in order to deal with the it. Using social suffering as a methodological approach the study seeks to investigate how change is related to lived experiences, idioms of distress, and narratives. Its aim has been to draw a locally specific picture of what matters are at stake in the local moral world that these farmers inhabit, and how they emerge as creative actors within it. A central assumption made about change is that it is two-fold; both a constructive force which gives birth to something new, and also a process that brings about uncertainty regarding the future. Uncertainty is understood as an existential condition of human life that demands a response, both causing suffering and transforming it. The possibility for positive outcomes in the future enables one to understand this small suffering of everyday life both as a consequence of social change, which fragments and destroys, and as an answer to it - as something that is positively meaningful. Suffering is seen to engage individuals to ensure continuity, in spite of the odds, and to sustain hope regarding the future. When the fieldwork was initiated Finland had been a member of the European Union for seven years and farmers felt it had substantially impacted on their working conditions. They complained about the restrictions placed on their autonomy and that their knowledge was neither recognised, nor respected by the bureaucrats of the EU system. New regulations require them to work in a manner that is morally unacceptable to them and financial insecurity has become more prominent. All these changes indicate the potential loss of the home and of the ability to ensure continuity of the family farm. Although the study initially focused on getting a general picture of working conditions and the nature of farming life, during the course of the fieldwork there was repeated mention of a perceived high prevalence of cancer in the area. This cancer talk is replete with metaphors that reveal cultural meanings tied to the farming life and the core values of autonomy, endurance and permanence. It also forms the basis of a shared identity and a means of delivering a moral message about the fragmentation of the good life; the loss of control; and the invasion of the foreign. This thesis formed part of the research project Expressions of Suffering. Ethnographies of Illness Experiences in Contemporary Finnish Contexts funded by the Academy of Finland. It opens up a vital perspective on the multiplicity and variety of the experience of suffering and that it is particularly through the use of the ethnographic method that these experiences can be brought to light. Keywords: suffering, uncertainty, phenomenology, habitus, agency, cancer, farming

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method.Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied.Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the relationships between uncertainty and the perceived usefulness of traditional annual budgets versus flexible budgets in 95 Swedish companies. We form hypotheses that the perceived usefulness of the annual budgets as well as the attitudes to more flexible budget alternatives are influenced by the uncertainty that the companies face. Our study distinguishes between two separate kinds of uncertainty: exogenous stochastic uncertainty (deriving from the firm’s environment) and endogenous deterministic uncertainty (caused by the strategic choices made by the firm itself). Based on a structural equations modelling analysis of data from a mail survey we found that the more accentuated exogenous uncertainty a company faces, the more accentuated is the expected trend towards flexibility in the budget system, and vice versa; the more endogenous uncertainty they face, the more negative are their attitudes towards budget flexibility. We also found that these relationships were not present with regard to the attitudes towards the usefulness of the annual budget. Noteworthy is, however, that there was a significant negative relationship between the perceived usefulness of the annual budget and budget flexibility. Thus, our results seem to indicate that the degree of flexibility in the budget system is influenced by both general attitudes towards the usefulness of traditional budgets and by the actual degree of exogenous uncertainty a company faces and by the strategy that it executes.