960 resultados para Genome-wide Search
Resumo:
Plants have the ability to use the composition of incident light as a cue to adapt development and growth to their environment. Arabidopsis thaliana as well as many crops are best adapted to sunny habitats. When subjected to shade, these plants exhibit a variety of physiological responses collectively called shade avoidance syndrome (SAS). It includes increased growth of hypocotyl and petioles, decreased growth rate of cotyledons and reduced branching and crop yield. These responses are mainly mediated by phytochrome photoreceptors, which exist either in an active, far-red light (FR) absorbing or an inactive, red light (R) absorbing isoform. In direct sunlight, the R to FR light (R/FR) ratio is high and converts the phytochromes into their physiologically active state. The phytochromes interact with downstream transcription factors such as PHYTOCHROME INTERACTING FACTOR (PIF), which are subsequently degraded. Light filtered through a canopy is strongly depleted in R, which result in a low R/FR ratio and renders the phytochromes inactive. Protein levels of downstream transcription factors are stabilized, which initiates the expression of shade-induced genes such as HFR1, PIL1 or ATHB-2. In my thesis, I investigated transcriptional responses mediated by the SAS in whole Arabidopsis seedlings. Using microarray and chromatin immunoprecipitation data, we identified genome-wide PIF4 and PIF5 dependent shade regulated gene as well as putative direct target genes of PIF5. This revealed evidence for a direct regulatory link between phytochrome signaling and the growth promoting phytohormone auxin (IAA) at the level of biosynthesis, transport and signaling. Subsequently, it was shown, that free-IAA levels are upregulated in response to shade. It is assumed that shade-induced auxin production takes predominantly place in cotyledons of seedlings. This implies, that IAA is subsequently transported basipetally to the hypocotyl and enhances elongation growth. The importance of auxin transport for growth responses has been established by chemical and genetic approaches. To gain a better understanding of spatio-temporal transcriptional regulation of shade-induce auxin, I generated in a second project, an organ specific high throughput data focusing on cotyledon and hypocotyl of young Arabidopsis seedlings. Interestingly, both organs show an opposite growth regulation by shade. I first investigated the spatio-transcriptional regulation of auxin re- sponsive gene, in order to determine how broad gene expression pattern can be explained by the hypothesized movement of auxin from cotyledons to hypocotyls in shade. The analysis suggests, that several genes are indeed regulated according to our prediction and others are regulated in a more complex manner. In addition, analysis of gene families of auxin biosynthetic and transport components, lead to the identification of essential family members for shade-induced growth re- sponses, which were subsequently experimentally confirmed. Finally, the analysis of expression pattern identified several candidate genes, which possibly explain aspects of the opposite growth response of the different organs.
Resumo:
AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.
Resumo:
Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.Kidney International advance online publication, 10 December 2014; doi:10.1038/ki.2014.361.
Resumo:
Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.
Resumo:
While it is widely acknowledged that the ubiquitin-proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.
Resumo:
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
Resumo:
Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies.
Resumo:
The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.
Resumo:
Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 × 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 × 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 × 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other.
Resumo:
Alcohol misuse is the leading cause of cirrhosis and the second most common indication for liver transplantation in the Western world. We performed a genome-wide association study for alcohol-related cirrhosis in individuals of European descent (712 cases and 1,426 controls) with subsequent validation in two independent European cohorts (1,148 cases and 922 controls). We identified variants in the MBOAT7 (P = 1.03 × 10(-9)) and TM6SF2 (P = 7.89 × 10(-10)) genes as new risk loci and confirmed rs738409 in PNPLA3 as an important risk locus for alcohol-related cirrhosis (P = 1.54 × 10(-48)) at a genome-wide level of significance. These three loci have a role in lipid processing, suggesting that lipid turnover is important in the pathogenesis of alcohol-related cirrhosis.
Resumo:
Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10(-10)). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10(-7)) and 13% for RAB38/CTSC (P = 5.8 × 10(-7)). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria.
Resumo:
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
Resumo:
The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.
Resumo:
Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.