863 resultados para Gaussian kernel
Resumo:
The application of Gaussian Quadrature (GQ) procedures to the evaluation of i—E curves in linear sweep voltammetry is advocated. It is shown that a high degree of precision is achieved with these methods and the values obtained through GQ are in good agreement with (and even better than) the values reported in literature by Nicholson-Shain, for example. Another welcome feature with GQ is its ability to be interpreted as an elegant, efficient analytic approximation scheme too. A comparison of the values obtained by this approach and by a recent scheme based on series approximation proposed by Oldham is made and excellent agreement is shown to exist.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
We study integral representations of Gaussian processes with a pre-specified law in terms of other Gaussian processes. The dissertation consists of an introduction and of four research articles. In the introduction, we provide an overview about Volterra Gaussian processes in general, and fractional Brownian motion in particular. In the first article, we derive a finite interval integral transformation, which changes fractional Brownian motion with a given Hurst index into fractional Brownian motion with an other Hurst index. Based on this transformation, we construct a prelimit which formally converges to an analogous, infinite interval integral transformation. In the second article, we prove this convergence rigorously and show that the infinite interval transformation is a direct consequence of the finite interval transformation. In the third article, we consider general Volterra Gaussian processes. We derive measure-preserving transformations of these processes and their inherently related bridges. Also, as a related result, we obtain a Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale. In the fourth article, we derive a class of ergodic transformations of self-similar Volterra Gaussian processes.
Resumo:
Probiotic supplements are single or mixed strain cultures of live microorganisms that benefit the host by improving the properties of the indigenous microflora (Seo et al 2010). In a pilot study at the University of Queensland, Norton et al (2008) found that Bacillus amyloliquefaciens Strain H57 (H57), primarily investigated as an inoculum to make high-quality hay, improved feed intake and nitrogen utilisation over several weeks in pregnant ewes. The purpose of the following study was to further challenge the potential of H57 -to show it survives the steam-pelleting process, and that it improves the performance of ewes fed pellets based on an agro-industrial by-product with a reputation for poor palatability, palm kernel meal (PKM), (McNeill 2013). Thirty-two first-parity White Dorper ewes (day 37 of pregnancy, mean liveweight = 47.3 kg, mean age = 15 months) were inducted into individual pens in the animal house at the University of Queensland, Gatton. They were adjusted onto PKM-based pellets (g/kg drymatter (DM): PKM, 408; sorghum, 430; chick pea hulls, 103; minerals and vitamins; Crude protein, 128; ME: 11.1MJ/kg DM) until day 89 of pregnancy and thereafter fed a predominately pelleted diet incorporating with or without H57 spores (10 9 colony forming units (cfu)/kg pellet, as fed), plus 100g/ewe/day oaten chaff, until day 7 of lactation. From day 7 to 20 of lactation the pelleted component of the diet was steadily reduced to be replaced by a 50:50 mix of lucerne: oaten chaff, fed ad libitum, plus 100g/ewe/day of ground sorghum grain with or without H57 (10 9 cfu/ewe/day). The period of adjustment in pregnancy (day 37-89) extended beyond expectations due to some evidence of mild ruminal acidosis after some initially high intakes that were followed by low intakes. During that time the diet was modified, in an attempt to improve palatability, by the addition of oaten chaff and the removal of an acidifying agent (NH4Cl) that was added initially to reduce the risk of urinary calculi. Eight ewes were removed due to inappetence, leaving 24 ewes to start the trial at day 90 of pregnancy. From day 90 of pregnancy until day 63 of lactation, liveweights of the ewes and their lambs were determined weekly and at parturition. Feed intakes of the ewes were determined weekly. Once lambing began, 1 ewe was removed as it gave birth to twin lambs (whereas the rest gave birth to a single lamb), 4 due to the loss of their lambs (2 to dystocia), and 1 due to copper toxicity. The PKM pellets were suspected to be the cause of the copper toxicity and so were removed in early lactation. Hence, the final statistical analysis using STATISTICA 8 (Repeated measures ANOVA for feed intake, One-way ANOVA for liveweight change and birth weight) was completed on 23 ewes for the pregnancy period (n = 11 fed H57; n = 12 control), and 18 ewes or lambs for the lactation period (n = 8 fed H57; n = 10 control). From day 90 of pregnancy until parturition the H57 supplemented ewes ate 17 more DM (g/day: 1041 vs 889, sed = 42.4, P = 0.04) and gained more liveweight (g/day: 193 vs 24.0, sed = 25.4, P = 0.0002), but produced lambs with a similar birthweight (kg: 4.18 vs 3.99, sed = 0.19, P = 0.54). Over the 63 days of lactation the H57 ewes ate similar amounts of DM but grew slower than the control ewes (g/day: 1.5 vs 97.0, sed = 21.7, P = 0.012). The lambs of the H57 ewes grew faster than those of the control ewes for the first 21 days of lactation (g/day: 356 vs 265, sed = 16.5, P = 0.006). These data support the findings of Norton et al (2008) and Kritas et al (2006) that certain Bacillus spp. supplements can improve the performance of pregnant and lactating ewes. In the current study we particularly highlighted the capacity of H57 to stimulate immature ewes to continue to grow maternal tissue through pregnancy, possibly through an enhanced appetite, which appeared then to stimulate a greater capacity to partition nutrients to their lambs through milk, at least for the first few weeks of lactation, a critical time for optimising lamb survival. To conclude, H57 can survive the steam pelleting process to improve feed intake and maternal liveweight gain in late pregnancy, and performance in early lactation, of first-parity ewes fed a diet based on PKM.
Resumo:
A non-dimensional parameter descriptive of the plowing nature of surfaces is proposed for the case of sliding between a soft and a relatively hard metallic pair. From a set of potential parameters which can be descriptive of the phenomenon, dimensionless groups are formulated and the influence of each one of them is analyzed. A non-dimensional parameter involving the root-mean square deviation (R-q) and the centroidal frequency (F-mean) deducted from the power-spectrum is found to have a high degree of correlation (as high as 0.93) with the coefficient of friction obtained in sliding experiments under lubricated condition.
Resumo:
State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.
Resumo:
Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural information encoded in the high-dimensional space, and lead to the problem of the curse of dimensionality. In this paper we present the first unsupervised tensorial anomaly detection method, along with a randomised version of our method. Our anomaly detection method, the One-class Support Tensor Machine (1STM), is a generalisation of conventional one-class Support Vector Machines to higher-order spaces. 1STM preserves the multiway structure of tensor data, while achieving significant improvement in accuracy and efficiency over conventional vectorised methods. We then leverage the theory of nonlinear random projections to propose the Randomised 1STM (R1STM). Our empirical analysis on several real and synthetic datasets shows that our R1STM algorithm delivers comparable or better accuracy to a state-of-the-art deep learning method and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
We consider the transmission of correlated Gaussian sources over orthogonal Gaussian channels. It is shown that the Amplify and Forward (AF) scheme which simplifies the design of encoders and the decoder, performs close to the optimal scheme even at high SNR. Also, it outperforms a recently proposed scalar quantizer scheme both in performance and complexity. We also study AF when there is side information at the encoders and decoder.
Resumo:
We study diagonal estimates for the Bergman kernels of certain model domains in C-2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. Thisn condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range-roughly speaking-from being mildly infinite-type'' to very flat at the infinite-type points.
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
We address the issue of rate-distortion (R/D) performance optimality of the recently proposed switched split vector quantization (SSVQ) method. The distribution of the source is modeled using Gaussian mixture density and thus, the non-parametric SSVQ is analyzed in a parametric model based framework for achieving optimum R/D performance. Using high rate quantization theory, we derive the optimum bit allocation formulae for the intra-cluster split vector quantizer (SVQ) and the inter-cluster switching. For the wide-band speech line spectrum frequency (LSF) parameter quantization, it is shown that the Gaussian mixture model (GMM) based parametric SSVQ method provides 1 bit/vector advantage over the non-parametric SSVQ method.
Resumo:
In this note, we point out that a large family of n x n matrix valued kernel functions defined on the unit disc D subset of C, which were constructed recently in [9], behave like the familiar Bergman kernel function on ID in several different ways. We show that a number of questions involving the multiplication operator on the corresponding Hilbert space of holomorphic functions on D can be answered using this likeness.