993 resultados para Gamma functions.
Resumo:
Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
This article applies social network analysis techniques to a case study of police corruption in order to produce findings which will assist in corruption prevention and investigation. Police corruption is commonly studied but rarely are sophisticated tools of analyse engaged to add rigour to the field of study. This article analyses the ‘First Joke’ a systemic and long lasting corruption network in the Queensland Police Force, a state police agency in Australia. It uses the data obtained from a commission of inquiry which exposed the network and develops hypotheses as to the nature of the networks structure based on existing literature into dark networks and criminal networks. These hypotheses are tested by entering the data into UCINET and analysing the outcomes through social network analysis measures of average path distance, centrality and density. The conclusions reached show that the network has characteristics not predicted by the literature.
Resumo:
Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.
Resumo:
Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.