997 resultados para Galáxia (Via Láctea)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter the core-core-valence Auger transitions of an atomic impurity, both in bulk or adsorbed on a jellium-like surface, are computed within a DFT framework. The Auger rates calculated by the Fermi golden rule are compared with those determined by an approximate and simpler expression. This is based on the local density of states (LDOS) with a core hole present, in a region around the impurity nucleus. Different atoms, Na and Mg, solids, Al and Ag, and several impurity locations are considered. We obtain an excellent agreement between KL1V and KL23V rates worked out with the two approaches. The radius of the sphere in which we calculate the LDOS is the relevant parameter of the simpler approach. Its value only depends on the atomic species regardless of the location of the impurity and the type of substrate. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper utilises the Juhn Murphy and Pierce (1991) decomposition to shed light on the pattern of slow male-female wage convergance in Australia over the 1980s. The analysis allows one to distinguish between the role of wage structure and genderspecific effects. The central question addressed is whether rising wage inequality counteracted the forces of increased female investment in labour market skills, i.e. education and experience. The conclusion is that in contrast to the US and the UK, Australian women do not appear to have been swimming against a tide of adverse wage structure changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & aims: - Excess adiposity (overweight) is one of numerous risk factors for cardiometabolic disease. Most risk reduction strategies for overweight rely on weight loss through dietary energy restriction. However, since the evidence base for long-term successful weight loss interventions is scant, it is important to identify strategies for risk reduction independent of weight loss. The aim of this study was to compare the effects of isoenergetic substitution of dietary saturated fat (SFA) with monounsaturated fat (MUFA) via macadamia nuts on coronary risk compared to usual diet in overweight adults. Methods: - A randomised controlled trial design, maintaining usual energy intake, but manipulating dietary lipid profile in a group of 64 (54 female, 10 male) overweight (BMI > 25), otherwise healthy, subjects. For the intervention group, energy intakes of usual (baseline) diets were calculated from multiple 3 day diet diaries, and SFA was replaced with MUFA (target: 50%E from fat as MUFA) by altering dietary SFA sources and adding macadamia nuts to the diet. Both control and intervention groups received advice on national guidelines for physical activity and adhered to the same protocol for diet diary record keeping and trial consultations. Anthropometric and clinical measures were taken at baseline and at 10 weeks. Results: A significant increase in brachial artery flow-mediated dilation (p < 0.05) was seen in the monounsaturated diet group at week 10 compared to baseline. This corresponded to significant decreases in waist circumference, total cholesterol (p < 0.05), plasma leptin and ICAM-1 (p < 0.01). Conclusions: - In patient subgroups where adherence to dietary energy-reduction is poor, isoenergetic interventions may improve endothelial function and other coronary risk factors without changes in body weight. This trial was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12607000106437).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating nano-sized materials of a controlled size and chemical composition is essential for the manufacturing of materials with enhanced properties on an industrial scale, as well as for research purposes, such as toxicological studies. Among the generation methods for airborne nanoparticles (also known as aerosolisation methods), liquid-phase techniques have been widely applied due to the simplicity of their use and their high particle production rate. The use of a collison nebulizer is one such technique, in which the atomisation takes place as a result of the liquid being sucked into the air stream and injected toward the inner walls of the nebulizer reservoir via nozzles, before the solution is dispersed. Despite the above-mentioned benefits, this method also falls victim to various sources of impurities (Knight and Petrucci 2003; W. LaFranchi, Knight et al. 2003). Since these impurities can affect the characterization of the generated nanoparticles, it is crucial to understand and minimize their effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used b-tricalcium phosphate (b-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to b-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the b-TCP stimulation, indicating that macrophage may participate in the b-TCP stimulated osteogenesis. Interestingly, when macrophageconditioned b-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis- related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an exploration of customisation in online and mobile banking. It investigates the application of user-tags to facilitate customised interactions in desktop and mobile devices, and its impact on usability. The thesis through a comparative study explains that customisation can positively affect usability especially for younger users, leading to higher levels of satisfaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However, to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognize in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS) generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM) unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP) residing in HASTY, a previously characterized gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.