1000 resultados para GIK16468-1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ways in which a society set standards of behaviour and of conduct for its members vary hugely. For example, accepted practices, recognised customs, spiritually or morally inspired norms, judicially declared rules, executively formulated edicts, formal legislative enactments or constitutionally embedded rights and duties. Whatever form they assume, these standards are the artificial construction of the human mind. Accordingly the law - whatever its form - can do no more and no less than regulate or set standards for human behaviour, human conduct, and human decision-making. The law cannot regulate the environment. It can only regulate human activities that impact directly or indirectly upon the environment. This applies as much to wetlands as components of the environment as it does to any other components of the environment or the environment at large. The capacity of the law to protect the environment and therefore wetlands is thus totally dependent upon the capacity of the law to regulate human behaviour, human conduct and human decision-making. At the same time the law needs to reflect the specific nature, functions and locations of wetlands. A wetland is an ecosystem by itself; it comprises a range of ecosystems within it; and it is part of a wider set of ecosystems. Hence, the significant ecological functions performed by wetlands. Then there are the benefits flowing to humans from wetlands. These may be social, economic, cultural, aesthetic, or a combination of some or of all of these. It is a challenge for a society acting through its legal system to find the appropriate balance between these ecological and these human values. But that is what sustainability requires.The ways in which a society set standards of behaviour and of conduct for its members vary hugely. For example, accepted practices, recognised customs, spiritually or morally inspired norms, judicially declared rules, executively formulated edicts, formal legislative enactments or constitutionally embedded rights and duties. Whatever form they assume, these standards are the artificial construction of the human mind. Accordingly the law - whatever its form - can do no more and no less than regulate or set standards for human behaviour, human conduct, and human decision-making. The law cannot regulate the environment. It can only regulate human activities that impact directly or indirectly upon the environment. This applies as much to wetlands as components of the environment as it does to any other components of the environment or the environment at large. The capacity of the law to protect the environment and therefore wetlands is thus totally dependent upon the capacity of the law to regulate human behaviour, human conduct and human decision-making. At the same time the law needs to reflect the specific nature, functions and locations of wetlands. A wetland is an ecosystem by itself; it comprises a range of ecosystems within it; and it is part of a wider set of ecosystems. Hence, the significant ecological functions performed by wetlands. Then there are the benefits flowing to humans from wetlands. These may be social, economic, cultural, aesthetic, or a combination of some or of all of these. It is a challenge for a society acting through its legal system to find the appropriate balance between these ecological and these human values. But that is what sustainability requires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halogen bonding has been observed for the first time between an isoindoline nitroxide and an iodoperfluorocarbon (see figure), which cocrystallize to form a discrete 2:1 supramolecular compound in which NO.⋅⋅⋅I halogen bonding is the dominant intermolecular interaction. This illustrates the potential use of halogen bonding and isoindoline nitroxide tectons for the assembly of organic spin systems...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title compound, C5H7N2+ C8H11O4-, the cis-anions associate through head-to-tail carboxylic acid carboxyl O-H...O hydrogen-bonds [graph set C(7)], forming chains which extend along c and are inter-linked through the carboxyl groups forming cyclic R2/2(8) associations with the pyridinium and an amine H donor of the cation. Further amine...carboxyl N-H...O interactions form enlarged centrosymmetric rings [graph set R4/4(18)] and extensions down b to give a three-dimensional structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the 1:1 proton-transfer compound of brucine with 2-(2,4,6-trinitroanilino)benzoic acid C23H27N2O4+ . C13H7N4O8- . H~2~O, the brucinium cations form the classic undulating ribbon substructures through overlapping head-to-tail interactions while the anions and the three related partial water molecules of solvation (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N-H...O(carboxyl) hydrogen bonds and indirectly by the three water molecules which form similar conjoint cyclic bridging units [graph set R2/4(8)] through O-H...O(carbonyl) and O(carboxyl) hydrogen bonds, giving a two-dimensional layered structure. Within the anion, intramolecular N-H...O(carboxyl) and N H...O(nitro) hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity inter-ring dihedral angle 32.50(14)\%]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures and also represents the first reported structure of any form of the guest compound 2-(2,4,6-trinitroanilino)benzoic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title molecular adduct C8H12O4 . C9H7N, the two species are interlinked through a carboxylic acid-isoquinoline O-H...N hydrogen bond, these molecular pairs then inter-associate through the second acid group of the cis-cyclohexane-1,2-dicarboxylic acids, forming a classic centrosymmetric cyclic head-to-head carboxylic acid--carboxyl O---H...O hydrogen-bonding association [graph set R^2^~2~(8)], giving a zero-dimensional structure.