949 resultados para GENETIC RADIATION EFFECTS
Resumo:
Raman spectra of the uranyl titanate mineral holfertite CaxU2-xTi(O8-xOH4x)•3H2O were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O stretching, bending. The mineral holfertite is metamict as is evidenced by order/disorder of the mineral. Unexpectedly the Raman spectrum of holfertite does not show any metamictization. The intensity of the UO stretching and bending modes show normal intensity and the bands are sharp.
Resumo:
Raman spectra of the uranyl titanate mineral davidite-(La) (La,Ce)(Y,U,Fe2+)(Ti,Fe3+)20(O,OH)38 were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of davidite-(La) are in harmony with those of the uranyl oxyhydroxides. The mineral davidite-(La) is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
The CDKN2 gene, encoding the cyclin dependent kinase inhibitor p16, is a tumour suppressor gene involved in melanoma and maps to chromosome band 9p22. Mutations or interstitial deletions of this gene have been found both in the germline of familial melanoma cases and somatically in melanoma cell lines. Previous mutation analyses of melanoma cell lines have indicated a high frequency of C:G to T:A transitions, with all of these mutations occurring at dipyrimidine sites. Including three melanoma cell lines carrying tandem CC to TT mutations, the spectrum of mutations so far reported indicates a possible role for u.v. radiation in the mutagenesis of this gene in some tumours. To further examine this hypothesis we have characterised mutations of the CDKN2 gene in 30 melanoma cell lines. Nineteen lines carried complete or partial homozygous deletions of the gene. Of the remaining cell lines, eight were shown by direct sequencing of PCR products from exon 1 and exon 2 to carry a total of nine different mutations of CDKN2. Two cell lines carried tandem CC to TT mutations and a high rate of C:G to T:A transitions was observed. This study provides further evidence for the role of u.v. light in the genesis of melanoma, with one target being the CDKN2 tumour suppressor gene.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.
Resumo:
We have used vibrational spectroscopy to study the formula and molecular structure of the mineral penkvilksite Na 2TiSi 4O 11·2H 2O. Penkvilksite is a mineral which may be used in the uptake of radioactive elements. Both Raman and infrared spectroscopies identify a band at 3638 cm−1 attributed to an OH-stretching vibration of hydroxyl units. The inference is that OH units are involved in the structure of penkvilksite. The formula may be well written as Na 2TiSi 4O 10(OH)2·H 2O. The mineral is characterised by a very intense Raman band at 1085 cm−1 and a broad infrared band at 1080 cm−1 assigned to SiO-stretching vibrations. Raman bands at 620, 667 and 711 cm−1 are attributed to SiO and TiO chain bonds. Water-stretching vibrations are observed as Raman bands at 3197, 3265, 3425 and 3565 cm−1. Vibrational spectroscopy enables aspects of the molecular structure of the mineral penkvilksite to be ascertained. Penkvilksite is a mineral which can incorporate actinides and lanthanides from radioactive waste.
Resumo:
The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup - B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs – B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.
Resumo:
Epigenetic regulation of gene expression is an important event for normal cellular homeostasis. Gene expression may be "switched" on or "turned" off via epigenetic means through adjustments in DNA architecture. These structural alterations result from changes to the DNA methylation status in addition to histone posttranslational modifications such as acetylation and methylation. Drugs which can alter the status of these epigenetic markers are currently undergoing clinical trials in a wide variety of diseases, including cancer.We illustrate the treatment of cell lines with histone deacetylase (HDi) and DNA methyltransferase inhibitors and the subsequent RNA isolation and reverse transcriptase polymerase chain reaction for several members of the CXC (ELR(+)) chemokine family. In addition we describe a chromatin immunoprecipitation assay to determine the association between chromatin transcription markers and DNA following pretreatment of cell cultures with an HDi, Trichostatin A (TSA). This assay allows us to determine whether treatment with TSA dynamically remodels the promoter region of our selected genes, as judged by the differences in the PCR product between our treated and untreated samples.
Resumo:
Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80-96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82-89% and 56-93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5-6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.
Resumo:
Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.
Resumo:
Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.
Resumo:
We report the synthesis of ZnO nanowires in ambient air at 650 degrees C by a single-step vapor transport method using two different sources Zn (ZnO nanowires-I) and Zn:Cu (ZnO nanowires-II). The Zn:Cu mixed source co-vaporize Zn with a small amount of Cu at temperatures where elemental Cu source does not vaporize. This method provides us a facile route for Cu doping into ZnO. The aspect ratio of the grown ZnO nanowires-II was found to be higher by more than five times compared ZnO nanowires-I. Photocatalytic activity was measured by using a solar simulator and its ultraviolet-filtered light. The ZnO nanowires-II shows higher catalytic activity due to increased aspect ratio and higher content of surface defects because of incorporation of Cu impurities.
Resumo:
In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.
Resumo:
Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report an effective and nondestructive method based on circular photogalvanic effect (CPGE) to detect the lattice polarity of InN. Because of the lattice inversion between In- and N-polar InN, the energy band spin splitting is opposite for InN films with different polarities. Consequently under light irradiation with the same helicity, CPGE photocurrents in In- and N-polar layers will have opposite directions, thus the polarity can be detected. This method is demonstrated by our CPGE measurements in both n- and p-type InN films.