928 resultados para GENETIC DIVERSITY
Resumo:
The genetic diversity of begomovirus isolates from tomato (Lycopersicon esculentum) fields in the Southeastern region of Brazil was analyzed by direct sequencing of PCR fragments amplified by using universal oligonucleotides for the begomovirus DNA-A, and subsequent computer-aided phylogenetic analysis. Samples of tomato plants and associated weeds showing typical symptoms of virus infection were collected at seven locations in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. A total of 137 out of 369 samples were infected with a begomovirus based on PCR analysis. Phylogenetic analysis indicated a high degree of genetic diversity among begomoviruses infecting tomatoes in the sampled area. One species (Tomato chlorotic mottle virus, TCMV) occurs predominantly in Minas Gerais, whereas in Rio de Janeiro and Espírito Santo a distinct species, not yet fully characterized, predominates. Phylogenetic analysis further indicates the presence of an additional four possible new species. This high degree of genetic diversity suggests a recent transfer of indigenous begomovirus from wild hosts into tomatoes. The close phylogenetic relationship verified between begomovirus infecting tomato and associated weeds favors this hypothesis.
Resumo:
The subtropical Northwestern region of Argentina (provinces of Tucumán, Salta, Jujuy, Santiago del Estero and Catamarca) suffers from a high incidence of the whitefly Bemisia tabaci, and the detection of begomoviruses is also common. The Northwest is the main bean-growing region of the country, and approximately 10% of Argentina's soybean crop is grown in this area. We have used a PCR-based assay to establish the identity and genetic diversity of begomoviruses associated with bean and soybean crops in Northwestern Argentina. Universal begomovirus primers were used to direct the amplification of a fragment encompassing the 5' portion of the capsid protein gene. Amplified fragments were cloned, sequenced and subjected to phylogenetic analysis to determine the sequence identity to known begomoviruses. The data indicated the presence of four distinct begomoviruses, all related to other New World begomoviruses. The prevalent virus, which was present in 94% of bean and soybean samples and also in two weed species, is closely related to Sida mottle virus (SiMoV). A virus with high sequence identity with Bean golden mosaic virus (BGMV) was found in beans. The two remaining viruses displayed less than 89% identity with other known begomoviruses, indicating that they may constitute novel species. One of these putative novel viruses was detected in bean, soybean and tomato samples.
Resumo:
Teak (Tectona grandis) is one of the main timber species in the world with high economic value, famous for its beauty, strength and durability. The objective of this work was to characterize the genetic diversity of teak genotypes used in Brazilian plantations. Nine microsatellite primers were used to assess 60 teak genotypes, including 33 genotypes from seeds of plantations and 14 clones from Cáceres municipality, Mato Grosso State, Brazil, and 13 clones from Honduras, Malaysia, India, Indonesia, Ivory Coast and Solomon Islands. Two groups of genotypes were detected using the Bayesian Structure analysis: 80% were placed in group 1, represented by genotypes from Cáceres and one from Malaysia, and 20% allocated in group 2, composed of clones from India, Solomon Islands, Malaysia and Honduras and the clones from the Ivory Coast. Most of the genetic variability (73%) was concentrated within groups according to AMOVA analysis. Genetic parameters were estimated for the two groups obtained in the analysis of Structure. Moderate genetic diversity was found, with 4.1 alleles per locus, on average, and an average heterozygosity of 0.329, which was lower than the expected heterozygosity (He = 0.492). Group 1 showed the lowest values for these parameters. Suggestions were made concerning the identification of contrasting genotypes to be used as parents in breeding programs.
Resumo:
Twenty-five BVDV strains, detected in serum from persistently infected cattle from Peru (n=15) and Chile (n=10) were genetically characterized. The phylogenetic analysis based on the 5' UTR showed that all 25 strains belonged to genotype 1. Twenty-three of the strains could further be subdivided into subtype 1b, and two out of ten Chilean strains into subtype 1a. In conclusion, in total 23 out of 25 strains analyzed were of genotype 1, subtype 1b. This is the predominant BVDV subtype in many countries all over the world, including USA. The close homology with previously described strains reflects the influence of livestock trade on the diversity of BVDV circulating within and between countries and continents. Peru and Chile have imported large numbers of cattle from USA and Europe, mostly with insufficient or lacking health documentation.
Resumo:
Protein engineering aims to improve the properties of enzymes and affinity reagents by genetic changes. Typical engineered properties are affinity, specificity, stability, expression, and solubility. Because proteins are complex biomolecules, the effects of specific genetic changes are seldom predictable. Consequently, a popular strategy in protein engineering is to create a library of genetic variants of the target molecule, and render the population in a selection process to sort the variants by the desired property. This technique, called directed evolution, is a central tool for trimming protein-based products used in a wide range of applications from laundry detergents to anti-cancer drugs. New methods are continuously needed to generate larger gene repertoires and compatible selection platforms to shorten the development timeline for new biochemicals. In the first study of this thesis, primer extension mutagenesis was revisited to establish higher quality gene variant libraries in Escherichia coli cells. In the second study, recombination was explored as a method to expand the number of screenable enzyme variants. A selection platform was developed to improve antigen binding fragment (Fab) display on filamentous phages in the third article and, in the fourth study, novel design concepts were tested by two differentially randomized recombinant antibody libraries. Finally, in the last study, the performance of the same antibody repertoire was compared in phage display selections as a genetic fusion to different phage capsid proteins and in different antibody formats, Fab vs. single chain variable fragment (ScFv), in order to find out the most suitable display platform for the library at hand. As a result of the studies, a novel gene library construction method, termed selective rolling circle amplification (sRCA), was developed. The method increases mutagenesis frequency close to 100% in the final library and the number of transformants over 100-fold compared to traditional primer extension mutagenesis. In the second study, Cre/loxP recombination was found to be an appropriate tool to resolve the DNA concatemer resulting from error-prone RCA (epRCA) mutagenesis into monomeric circular DNA units for higher efficiency transformation into E. coli. Library selections against antigens of various size in the fourth study demonstrated that diversity placed closer to the antigen binding site of antibodies supports generation of antibodies against haptens and peptides, whereas diversity at more peripheral locations is better suited for targeting proteins. The conclusion from a comparison of the display formats was that truncated capsid protein three (p3Δ) of filamentous phage was superior to the full-length p3 and protein nine (p9) in obtaining a high number of uniquely specific clones. Especially for digoxigenin, a difficult hapten target, the antibody repertoire as ScFv-p3Δ provided the clones with the highest affinity for binding. This thesis on the construction, design, and selection of gene variant libraries contributes to the practical know-how in directed evolution and contains useful information for scientists in the field to support their undertakings.
Resumo:
The Amplified Fragment Length Polymorphism (AFLP) technique was used to access genetic diversity between three domestic and nine wild proso millet biotypes from the United States and Canada. Eight primer combinations detected 39 polymorphic DNA fragments, with the genetic distance estimates among biotypes ranging from 0.02 to 0.04. Colorado-Weld County black seeded and Wyoming-Platte County were the most distinct biotypes according to the dissimilarity level. A UPGMA cluster analysis revealed two distinct groups of proso millet without any geographic association. Six weed biotypes exhibiting some characters of cultivated plants were grouped together with domesticated biotypes of proso millet while the three typical wild phenotypes were clearly clustered into another group according to AFLP markers.
Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology
Resumo:
Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data.
Resumo:
En av naturens mest grundläggande aspekter är den enorma mängd av variation som existerar mellan arter. Denna variation har lett oss till att klassificera olika organismer på basis av morfologiska skillnader och på senare tid till att jämföra genetiska skillnader på individens nivå. Den marina kiselalgen Skeletonema marinoi är en av de vanligaste växtplanktonarter i Östersjön under vårblomningen och anses viktig för den årliga produktionen. En av mina främsta målsättningar var att beskriva den intra-specifika diversiteten hos denna art längs med miljögradienter i Östersjön. Ett annat mål var att klargöra de faktorer som eventuellt är involverade i konfigurationen av genetisk diversitet och differentiering. Med hjälp av genetiska markörer visade jag att den genetiska diversiteten hos S. marinoi populationer i Östersjön är lägre jämfört med populationer i östra delen av Nordsjön. Arten är genetiskt uppdelad så att en utpräglad population förekommer i Östersjön och en annan, genetiskt åtskild population förekommer norr om de Danska sunden. Resultaten visar att de genetiskt åtskilda populationerna är anpassade till lokala salinitetsförhållanden. Genflödet mellan populationerna korrelerade kraftigt med havströmmar i området. Mina studier avslöjade även omfattande variation av fenotypiska, ekologiskt vikitga särdrag hos olika kloner. Djurplankton som äter kiselalger kunde modifiera den klonala mångfalden av fenotypiskt variabla S. marinoi populationer. En ökad klonal mångfald ledde till högre prestationsförmåga i fråga om primär produktion och stabiliserade ekofysiologiska funktioner. Som visas i denna avhandling består en art allt som oftast av åtskilliga genetiska varianter med fenotypiska skillnader. Kunskap om sådana intra-specifika skillnader är en förutsättning för att vi skall kunna förstå var och varför arter förekommer. Denna kunskap utgör även en grund för prognoser som siktar på att förutspå huruvida arter kan anpassa sig till framtida miljöförhållanden. ------------------------------------------------------ Suunnaton määrä variaatioita eliölajien välillä on perustavanlaatuinen ominaisuus luonnossa. Perinteisesti tätä monimuotoisuutta on käytetty organismien luokittelemiseen eri lajeihin niiden morfologisten eroavaisuuksien perusteella. Hiljattain myös geneettisten erojen huomioimista yksilötasolla on hyödynnetty lajien luokittelemisessa. Merialueilla esiintyvä piilevä, Skeletonema marinoi on yksi Itämeren tavallisimmista kasviplanktonlajeista kevätkukinnan aikana. Tavoitteenani oli selventää geneettistä ja fenotyyppistä monimuotoisuutta pitkin Itämeren ympäristögradienttejä. Geneettisen monimuotoisuuteen ja erkaantumiseen vaikuttavien tekijöiden selvittäminen oli tärkeä aspekti väitöstutkimuksessani. Geneettisiä markkereita käyttämällä pystyin toteamaan, että S. marinoi levän geneettinen monimuotoisuus on Itämeressä merkittävästi alhaisempi kuin läheisessä Pohjanmeren itäosassa. Tutkittu laji jakautuu geneettisesti yhteen erilliseen populaatioon Itämeressä ja toiseen selvästi erottuvaan populaatioon Tanskan salmien pohjoispuolella. Kokeellisten tulosten perusteella nämä geneettisesti erilaistuneet populaatiot ovat kumpikin sopeutuneet paikalliseen veden suolapitoisuuteen. Populaatioiden välisen geenivirran ja merivirtojen luoman yhteyden välillä havaittiin vahva korrelaatio. Tutkimukseni paljastivat myös laajaa vaihtelua Skeletonema-kloonien ekologisesti tärkeissä ominaisuuksissa. Kokeellisten tutkimusteni perusteella laiduntajat pystyivät muuttamaan geneettisten kloonien lukumäärää monimuotoisissa S. marinoi populaatioissa. Lisääntynyt kloonien lukumäärä paransi perustuotantokykyä ja vakautti ekofysiologisia toimintoja. Kuten tässä väitöstutkimuksessa osoitetaan, lajit koostuvat useimmiten lukuisista geneettisistä muunnelmista, jotka eroavat usein fenotyypeiltään. Ymmärtääksemme missä tietyt lajit esiintyvät ja miksi, tarvitsemme tietoa lajien sisäisistä vaihteluista. Tämä tieto on tarpeellista, jotta voimme ennustaa lajien sopeutumista tuleviin ympäristönmuutoksiin.
Resumo:
The present study was focused on the analysis of agronomical, nutritional, physicochemical, and antioxidant properties of six genetically different quinoa (Chenopodium quinoa Willd) genotypes cultivated in three distinctive geographical zones of Chile. Ancovinto and Cancosa genotypes from the northern Altiplano (19 ºS), Cáhuil and Faro from the central region (34 ºS), and Regalona and Villarica from the southern region (39 ºS) are representative of high genetic differentiation among the pooled samples, in particular between Altiplano and the central-southern groups. A Common-Garden Assay at 30 ºS showed significant differences among seed origins in all morphometric parameters and also in yields. Altiplano genotypes had larger panicule length but no seed production. A significant influence of the different quinoa genotypes on chemical composition and functional properties was also observed. Protein concentration ranged from 11.13 to 16.18 g.100 g-1 d.m., while total dietary fiber content ranged from 8.07-12.08 g.100 g-1 d.m., and both were the highest in Villarrica ecotype. An adequate balance of essential amino acids was also observed. Sucrose was the predominant sugar in all genotypes. Antioxidant activity was high in all genotypes, and it was highest in Faro genotype (79.58% inhibition).
Resumo:
Retrotransposons, which used to be considered as “junk DNA”, have begun to reveal their immense value to genome evolution and human biology due to recent studies. They consist of at least ~45% of the human genome and are more or less the same in other mammalian genomes. Retrotransposon elements (REs) are known to affect the human genome through many different mechanisms, such as generating insertion mutations, genomic instability, and alteration in gene expression. Previous studies have suggested several RE subfamilies, such as Alu, L1, SVA and LTR, are currently active in the human genome, and they are an important source of genetic diversity between human and other primates, as well as among humans. Although several groups had used Retrotransposon Insertion Polymorphisms (RIPs) as markers in studying primate evolutionary history, no study specifically focused on identifying Human-Specific Retrotransposon Element (HS-RE) and their roles in human genome evolution. In this study, by computationally comparing the human genome to 4 primate genomes, we identified a total of 18,860 HS-REs, among which are 11,664 Alus, 4,887 L1s, 1,526 SVAs and 783 LTRs (222 full length entries), representing the largest and most comprehensive list of HS-REs generated to date. Together, these HS-REs contributed a total of 14.2Mb sequence increase from the inserted REs and Target Site Duplications (TSDs), 71.6Kb increase from transductions, and 268.2 Kb sequence deletion of from insertion-mediated deletion, leading to a net increase of ~14 Mb sequences to the human genome. Furthermore, we observed for the first time that Y chromosome might be a hot target for new retrotransposon insertions in general and particularly for LTRs. The data also allowed for the first time the survey of frequency of TE insertions inside other TEs in comparison with TE insertion into none-TE regions. In summary, our data suggest that retrotransposon elements have played a significant role in the evolution of Homo sapiens.
Resumo:
Mycoplasma hyopneumoniae, the causative agent of porcine enzootic pneumonia, is present in swine herds worldwide. However, there is little information on strains infecting herds in Canada. A total of 160 swine lungs with lesions suggestive of enzootic pneumonia originating from 48 different farms were recovered from two slaughterhouses and submitted for gross pathology. The pneumonic lesion scores ranged from 2% to 84%. Eighty nine percent of the lungs (143/160) were positive for M. hyopneumoniae by real-time PCR whereas 10% (16/160) and 8.8% (14/160) were positive by PCR for M. hyorhinis and M. flocculare, respectively. By culture, only 6% of the samples were positive for M. hyopneumoniae (10/160). Among the selected M. hyopneumoniae-positive lungs (n = 25), 9 lungs were co-infected with M. hyorhinis, 9 lungs with PCV2, 2 lungs with PRRSV, 12 lungs with S. suis and 10 lungs with P. multocida. MLVA and PCR-RFLP clustering of M. hyopneumoniae revealed that analyzed strains were distributed among three and five clusters respectively, regardless of severity of lesions, indicating that no cluster is associated with virulence. However, strains missing a specific MLVA locus showed significantly less severe lesions and lower numbers of bacteria. MLVA and PCR-RFLP analyses also showed a high diversity among field isolates of M. hyopneumoniae with a greater homogeneity within the same herd. Almost half of the field isolates presented less than 55% homology with selected vaccine and reference strains.
Resumo:
S. album L. is the source of highly priced and fragrant heartwood which on steam distillation yields on an average 57 per cent oil of high perfumery value. Global demand for sandalwood is about 5000-6000 tons/year and that of oil is 100 tons/year. Heartwood of sandal is estimated to fetch up to Rs. 3.7 million/ton and wood oil Rs.70,000-100,000/ kg in the international market. Sandal heartwood prices have increased from Rs. 365/ton in 1900 to Rs. 6.5 lakhs/ton in 1999-2000 and to Rs. 37 lakhs/ton in 2007. Substantial decline in sandalwood production has occurred from 3176 tons/year during 1960-‘ 65 to 1500 tons/year in 1997-98, and to 500 tons/year in 2007.Depletion of sandal resources is attributed to several factors, both natural and anthropogenic. Low seed setting, poor seed germination, seedling mortality, lack of haustorial connection with host plant roots, recurrent annual fires in natural sandal forests, lopping of trees for fodder, excessive grazing, hacking, encroachments, seedling diseases and spread of sandal spike disease are the major problems facing sandal. While these factors hinder sandal regeneration in forest areas, the situation is accelerated by human activities of chronic overexploitation and illicit felling.Deterioration of natural sandal populations due to illicit felling, encroachments and diseases has an adverse effect on genetic diversity of the species. The loss of genetic diversity has aggravated during recent years due to extensive logging, changing landuse patterns and poor natural regeneration. The consequent genetic erosion is of serious concern affecting tree improvement programme in sandal. Conservation as well as mass propagation are the two strategies to be given due importance. To initiate any conservation programme, precise knowledge of the factors influencing regeneration and survival of the species is essential. Hence, the present study was undertaken with the objective of investigating the autotrophic and parasitic phase of sandal seedlings growth, the effects of shade on morphology, chlorophyll concentration and chlorophyll fluorescence of sandal seedlings, genetic diversity in sandal seed stands using ISSR markers, and the diversity of fungal isolates causing sandal seedling wilt using RAPD markers. All these factors directly influence regeneration and survival of sandal seedlings in natural forests and plantations.
Resumo:
Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.
Resumo:
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Resumo:
Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved.