985 resultados para GAAS QUANTUM-WELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaAsSbN/GaAs strained-layer single quantum wells grown on a GaAs substrate by molecular-beam epitaxy with different N concentrations were studied using the photoluminescence (PL) technique in the temperature range from 9 to 296 K. A strong redshift in optical transition energies induced by a small increase in N concentration has been observed in the PL spectra. This effect can be explained by the interaction between a narrow resonant band formed by the N-localized states and the conduction band of the host semiconductor. Excitonic transitions in the quantum wells show a successive red/blue/redshift with increasing temperature in the 2-100 K range. The activation energies of nonradiative channels responsible for a strong thermal quenching are deduced from an Arrhenius plot of the integrated PL intensity. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we analyze the relation between the interface microroughness and the full width at half maximum (FWHM) of the photoluminescence (PL) spectra for a GaAs/Ga0.7Al0.3As multiple quantum well (QW) system. We show that, in spite of the complex correlation between the microscopic interface-defects parameters and the QW optical properties, the Singh and Bajaj model [Appl. Phys. Lett. 44, 805 (1984)] provides a good quantitative description of the excitonic PL-FWHM. ©1999 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 and 3000 ) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs. © 2010 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on E b are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the results of magnetophotoluminescence (MPL) measurements carried out in a sample containing two Al0.35Ga0.65As/GaAs, coupled double quantum wells (CDQWs), with inter-well barriers of different thicknesses, which have the heterointerfaces characterized by a distribution of bimodal roughness. The MPL measurements were performed at 4 K, with magnetic fields applied parallel to the growth direction, and varying from 0 to 12 T. The diamagnetic shift of the photoluminescence (PL) peaks is more sensitive to changes in the confinement potential, due to monolayer variations in the mini-well thickness, rather than to the exciton localization at the local potential fluctuations. As the magnetic field increases, the relative intensities of the two peaks in each PL band inverts, what is attributed to the reduction in the radiative lifetime of the delocalized excitons, which results in the radiative recombination, before the excitonic migration between the higher and lower energy regions in each CDQW occurs. The dependence of the full width at half maximum (FWHM) on magnetic field shows different behaviors for each PL peak, which are attributed to the different levels and correlation lengths of the potential fluctuations present in the regions associated with each recombination channel. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on Eb are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear and nonlinear optical absorptions considering the weak-coupling electron-LO-phonon interaction in asymmetrical semiparabolic quantum wells are theoretically investigated. The numerical results for the typical GaAs/AlxGa1-xAs material show that the factors of Al content x, the relaxation time and the photon energy have great influence on the optical absorption coefficients. Moreover, the theoretical values of the optical absorptions are more than a factor of 2-3 higher than the one in the structure without considering the electron-LO-phonon interaction by calculating. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a measurement on a GaAs quantum well waveguide with a high built in field across the quantum wells at a wavelength far from the bandedge. The device structure used for the measurement has been fabricated at STC Technology Ltd and is that of a standard laser ridge structure. In fabrication double heterostructure layers are grown on a [001] n + GaAs substrate, with the active region containing two intrinsic GaAs quantum wells of 10nm thickness separated by 10nm. A 4μm wide ridge is etched to provide transverse optical guiding. The experimental work has involved the use of 1.06μm wavelength light from a Q-switched Nd:YAG laser. Any induced change in refractive index is determined by measuring the change in transmission of the quantum well waveguide Fabry-Perot cavity. The waveguide is placed on a Peltier temperature controller to allow thermal tuning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/AlyGa1-yAs/AlxGa1-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding energy of an exciton bound to a neutral donor (D-0,X) in GaAs quantum-well wires is calculated variationally as a function of the wire width for different positions of the impurity inside the wire by using a two-parameter wavefunction. There is no artificial parameter added in our calculation. The results we have obtained show that the binding energies are closely correlated to the sizes of the wire, the impurity position, and also that their magnitudes are greater than those in the two-dimensional quantum wells compared. In addition, we also calculate the average interparticle distance as a function of the wire width. The results are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in-plane optical anisotropy of three groups of GaAs/AlGaAs quantum well structures has been studied by reflectance-difference spectroscopy (RDS). For GaAs/Al0.36Ga0.64As single QW structures, it is found that the optical anisotropy increases quickly as the well width is decreased. For an Al0.02Ga0.98As/AlAs multiple QW with a well width of 20nm, the optical anisotropy is observed not only for the transitions between ground states but also for those between the excited states with transition index n up to 5. An increase of the anisotropy with the transition energy, or equivalently the transition index n, is clearly observed. The detailed analysis shows that the observed anisotropy arises from the interface asymmetry of QWs, which is introduced by atomic segregation or anisotropic interface roughness formed during the growth of the structures. More, when the 1 ML InAs is inserted at one interface of GaAs/AlGaAs QW, the optical anisotropy of the QW can be increased by a factor of 8 due to the enhanced asymmetry of the QW. These results demonstrate clearly that the RDS is a sensitive and powerful tool for the characterization of semiconductor interfaces.