253 resultados para Fruiting
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 mx4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation responses to environmental changes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Seed dispersal by animals is a complex process involving several distinct stages: fruit removal by frugivores, seed delivery in different microhabitats, seed germination, seedling establishment, and adult recruitment. Nevertheless, studies conducted until now have provided scarce information concerning the sequence of stages in a plant's life cycle in its entirety. The main objective of this study was to evaluate the immediate consequences of frugivore activity for Eugenia umbelliflora ( Myrtaceae) early recruitment by measuring the relative importance of each fruit-eating bird species on the establishment of new seedlings in scrub and low restinga vegetation in the Atlantic rainforest, Brazil. We conducted focal tree observations on E. umbelliflora trees recording birds' feeding behaviour and post-feeding movements. We also recorded the fate of dispersed seeds in scrub and low restinga vegetation. We recorded 17 bird species interacting with fruits in 55 h of observation. Only 30% of the handled fruits were successfully removed. From 108 post flight movements of exit from the fruiting trees, 30.6% were to scrub and 69.4% to low restinga forest. Proportion of seed germination was higher in low restinga than in the scrub vegetation. Incorporating the probabilities of seeds' removal, deposition, and germination in both sites, we found that the relative importance of each frugivorous bird as seed dispersers varies largely among species. Turdus amaurochalinus and Turdus rufiventris were the best dispersers, together representing almost 12% probability of seed germination following removal. Our results show the importance of assessing the overall consequence of seed dispersal within the framework of disperser effectiveness, providing a more comprehensive and realistic evaluation of the relative importance of different seed dispersers on plant population dynamics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Psittacids are important pre-dispersal seed predators. However, little is known about the parameters that may determine seed predation rates by these birds, such as plants' characteristics and microhabitat. Eriotheca gracilipes (Bombacaceae) is a semi-deciduous tree widely distributed in the Brazilian cerrado. The fruits are dehiscent pods and the seeds are wind-dispersed. Some individuals lose their leaves during the fruiting season, getting very conspicuous. Here we tested the hypothesis that the absence of leaves in E. gracilipes during the fruiting season may increase pre-dispersal seed predation by psittacids. We also tested the hypotheses that (1) seed predation intensity increases with increasing plant size and (2) number of fruits, (3) seed predation decreases with the increasing number of conspecific plants in a range of 15 m, and (4) seed predation intensity is lower in plants with higher vegetation cover over their crowns. The small parakeet Brotogeris versicolurus was the only species observed preying upon the seeds of E. gracilipes. The percentage of fruits damaged by the parakeets ranged from 0 to 100% (66.98 +/- 43.11%, n = 72) among the different plants. Our data give weak support to the hypothesis that the absence of leaves may facilitate plants and/or fruits detection by the parakeets. However, seed predation intensity was significantly affected by crop size. The hypothesis that conspecific fruiting plants surrounding the studied individuals may reduce predation rate was not supported. Nevertheless, trees without higher vegetation cover over their crowns were significantly affected by increased seed predation. This suggests that seed predation by parakeets can be a potential selective factor influencing fruit crop sizes in E. gracilipes. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Origin and importance. Acerola, or Malpighia emarginata D. C., is native to the Caribbean islands, Central America and the Amazonian region. More recently, it has been introduced in subtropical areas (Asia, India and South America). The vitamin C produced by acerola is better absorbed by the human organism than synthetic ascorbic acid. Exportation of acerola crops is a potential alternative source of income in agricultural businesses. In Brazil, the commercial farming of acerola is quite recent. Climatic conditions. Acerola is a rustic plant. It can resist temperatures close to 0 degrees C, but it is well adapted to temperatures around 26 degrees C with rainfall between (1200 and 1600) mm per year. Fruit characteristics. Acerola fruit is drupaceous, whose form can vary from round to conic. When ripe, it can be red, purple or yellow. The fruit weight varies between (3 and 16) g. Maturation. Acerola fruit presents fast metabolic activity and its maturation occurs rapidly. When commercialised in ambient conditions, it requires fast transportation or the use of refrigerated containers to retard its respiration and metabolism partially. Production and productivity. Flowering and fruiting are typically in cycles associated with rain. Usually, they take place in 25-day cycles, up to 8 times per year. The plant can be propagated by cuttings, grafting or seedlings. Harvest. Fruits produced for markets needs to be harvested at its optimal maturation stage. For distant markets, they need to be packed in boxes and piled up in low layers; transportation should be done in refrigerated trucks in relatively high humid conditions. Biochemical constituents. Acerola is the most important natural source of vitamin C [(1000 to 4500) mg.100(-1) g of pulp], but it is also rich in pectin and pectolytic enzymes, carotenoids, plant fibre, vitamin B, thiamin, riboflavin, niacin, proteins and mineral salts. It has also shown active anti-fungal properties. Products and market. Acerola is used in the production of juice, soft drinks, gums and liqueurs. The USA and Europe are great potential markets. In Europe, acerola extracts are used to enrich pear or apple juices. In the USA, they are used in the pharmaceutical industry. Conclusions. The demand for acerola has increased significantly in recent years because of the relevance of vitamin C in human health, coupled with the use of ascorbic acid as an antioxidant in food and feed. Acerola fruit contains other significant components, which are likely to lead to a further increase in its production and trade all over the world.