908 resultados para Frozen Bread
Resumo:
Kargl, Florian; Sj?str?m, J.; Fernandez-Alonso, F.; Swenson, J., (2007) 'The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering', Journal of Physics: Condensed Matter 19 pp.415119 RAE2008
Resumo:
As part of the “free-from” trend, biopreservation for bread products has increasingly become important to prevent spoilage since artificial preservatives are more and more rejected by consumers. A literature review conducted as part of this thesis revealed that the evaluation of more suitable antifungal strains of lactic acid bacteria (LAB) is important. Moreover, increasing the knowledge about the origin of the antifungal effect is fundamental for further enhancement of biopreservation. This thesis addresses the investigation of Lactobacillus amylovorus DSM19280, Lb. brevis R2: and Lb. reuteri R29 for biopreservation using in vitro trials and in situ sourdough fermentations of quinoa, rice and wheat flours as biopreservatives in breads. Their contribution to quality and shelf life extension on bread was compared and related to their metabolic activity and substrate features. Moreover, the quantity of antifungal carboxylic acids produced during sourdough fermentation was analysed. Overall a specific profile of antifungal compounds was found in the sourdough samples which were strain and substrate dependently different. The best preservative effect in quinoa sourdough and wheat sourdough bread was achieved when Lb. amylovorus DSM19280 fermented sourdough was used. However, the concentration of the antifungal compounds found in these biopreservatives were much lower when compared with Lb. reuteri R29 as the highest producer. Nevertheless, the artificial application of the highest concentration of these antifungal compounds in chemically acidified wheat sourdough bread succeeded in a longer shelf life than achieved only by acidifying the dough. This evidences their partial contribution to the antifungal activity and their synergy. Additionally, a HRGC/MS method for the identification and quantification of the antifungal active compounds cyclo(Leu-Pro), cyclo(Pro-Pro), cyclo(Met-Pro) and cyclo(Phe-Pro) was successfully developed by using stable isotope dilutions assays with the deuterated counterparts. It was observed that the concentrations of cyclo(Leu-Pro), cyclo(Pro-Pro), and cyclo(Phe-Pro) increased only moderately in MRS-broth and wort fermentation by the activity of the selected microorganism, whereas the concentration of cyclo(Met-Pro) stayed unchanged.
Resumo:
Transport of particulate clay occurs during some extremely cold weather conditions typically in the winter in the far North area. During the transport and temporary storage time, the clay may cake inside a rail or road wagon or in a silo, and consequently be difficult to be discharged from the containers. This paper studied caking strength of a granulated clay powder with a certain water moisture content of 18% for influences of temperature, packing stress and freezing time. The temperature tested was -5 oC, -10 oC and -20 oC. Because the clay powder may be packed at different bed depth, the study was undertaken across the packing stress range at 8.3 kPa (1 m bed depth), 25.0 kPa (3 m) and 75.0 kPa (9 m). Freezing time varied between 4 hours (transport) and 18 hours (overnight). During the tests, failure of caked materials was measured using a QTS texture analyzer and the caking strength of frozen samples was calculated. Influences on freeze caking of granular clay in storage or transport are discussed briefly. Some conclusions are made at the end of the paper,including recommendations for practical methods for mitigating these problems.
Resumo:
A full-electron coupled-state treatment of positronium (Ps)- inert gas scattering is developed within the context of the frozen target approximation. Calculations are performed for Ps(Is) scattering by Ne and Ar in the impact energy range 0-40 eV using coupled pseudostate expansions consisting of nine and 22 Ps states. The purpose of the pseudostates is primarily to represent ionization of the Ps which is found to be a major process at the higher energies. First Born estimates of target excitation are used to complement the frozen target results. The available experimental data are discussed in detail. It is pointed out that the very low energy measurements (less than or equal to2 eV) correspond to the momentum transfer cross section sigma(mom) and not to the elastic cross section sigma(el). Calculation shows that sigma(mom), and sigma(el) diverge very rapidly with increasing energy and consequently comparisons of the low-energy data with ITel can be very misleading. Agreement between the calculations and the low-energy measurements of anion as well;as higher energy (greater than or equal to15 eV) beam measurements of the total cross section, is less than satisfactory. Results for Ps(1s) scattering by Kr and Xe in the static-exchange approximation are also presented.
Resumo:
An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.
Temperature Controlled Raman Microscopy for the Imaging of Polymorphic Transitions in Frozen Systems
Resumo:
Background: It is known that 20-30% of fresh frozen plasma (FFP) is used in intensive care units (ICUs), but little is known about variations in decision making between clinicians in relation to coagulopathy management. Our aim was to describe ICU clinicians' beliefs and practice in relation to FFP treatment of non-bleeding coagulopathic critically ill patients.
Resumo:
Amphibian skin secretions are unique sources of bioactive peptides and their donor species are currently rapidly disappearing from the biosphere. Here, we report that both peptides and polyadenylated mRNAs from skin granular glands remain amenable to study in samples of stimulated skin secretions following their storage in 0.1 % aqueous trifluoroacetic acid at -20 °C for many years. Frozen acidified solutions of toad (Bombina variegata) skin secretions, stored for 12 years, were thawed and samples removed for direct reverse phase HPLC fractionation. Additional samples were removed, snap frozen and lyophilised for construction of cDNA libraries following polyadenylated mRNA capture using magnetic oligo-dT beads and reverse transcription. Using the bombesin and bradykinin peptides found in bombinid toad skin as models, individual variant peptides of each type were located in reverse phase HPLC fractions and their corresponding biosynthetic precursor-encoding mRNA transcripts were cloned from the cDNA library using a RACE PCR strategy. This study illustrates unequivocally that both amphibian skin secretion peptides and their biosynthetic precursor-encoding polyadenylated mRNAs are stable in frozen acid-solvated skin secretion samples for considerable periods of time-a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.