911 resultados para Freeze drying


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The total lipid content, composition of main lipid classes, composition of sterols and composition of fatty acids in the main glycerolipids of Perna viridis were analyzed through four seasons using TLC-FID and GLC. Mussel samples were collected during different seasons between 2003 and 2004 from Shengsi Island, Zhejiang Province, China and stored frozen prior to freeze-drying and lipid extraction. Ten grams of dried mussel powder of each season were analyzed. Total lipid content ranged from 14.5 g/100 g in spring month to 7.8 g/100 g dried mussel powder in autumn month. The predominant lipid in spring month was triacylglycerol (TAG), however, in the other three seasons the phospholipids (PL) was the main lipid class. The most abundant fatty acid in TAG, PL and phosphatidylcholine (PC) was 16:0, with the summer samples having the highest proportion (24-30% of total fatty acid) and winter the lowest (14-22%). In phosphatidylethanolamine (PE), the spring samples had the highest proportions of 16:0. The predominant polyunsaturated fatty acids (PUFA) were 22:6n-3 and 20:5n-3 in TAG, PL, PE and PC (25-40%). The proportions of 22:6n-3 and 20:5n-3 were higher in spring than in other seasons in PL and PE. There were nine sterols identified, with cholesterol being the predominant sterol, and other main ones were desmostersol/brassicasterol and 24-methylenecholesterol. Proportions of other fatty acids in different lipid fractions and the sterol compositions as well also varied seasonally. There were subject to the seasonal variations. Differences in lipid content and composition, fatty acid composition in different lipid fractions may be caused by multiple factors such as lifecycle, sex, variation of plankton in different seasons and temperature, which could influence physiological activities and metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An enhanced macromolecular nanofiber network and its implications have been developed by employing the understanding of its formation with an emphasis on its topological aspect. Using agarose aqueous solution as a typical example, the macromolecular nanofiber network of soft functional materials has been clearly visualized for the first time using the developed technique of field emission scanning electronic microscopy coupled with flash-freeze-drying. Both the systematic kinetic study and the image evidence indicates that the nanofiber network in soft functional materials such as agarose turns out to form through a self-expitaxial nucleation-controlled process. This new understanding enables us to engineer ultra functions of soft materials via nanofiber network architecture, which in turn opens up a new direction in nano fabrication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite material can be fabricated via formation and freeze-drying of a gel. The field emission scanning electron microscopy, nitrogen adsorption-desorption and pore size distribution analysis reveal that the introduction of a small amount of carbon nanotubes (CNTs) can effectively increase the surface roughness and porosity of polyvinylidene fluoride (PVDF). Contact angle measurements of water and oil indicate that the as-obtained composite material is superhydrophobic and superoleophilic. Further experiments demonstrate that these composite material can be efficiently used to separate/absorb the insoluble oil from oil polluted water as membrane/absorbent. Most importantly, the electrical conductivity of such porous CNT/PVDF composite material can be tuned by adjusting the mass ratio of CNT to PVDF without obviously changing the superhydrophobicity or superoleophilicity. The unique properties of the porous CNT/PVDF composite material make it a promising candidate for oil-polluted water treatment as well as water-repellent catalyst-supporting electrode material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)-gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI-GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current study focuses on giving a basic understanding of tubular graphene sheets or carbon nanotubes (CNTs) and points towards their role in fabricating elastomer composites. Since the properties and the performance of CNT reinforced elastomer composites predominantly depend on the rate of dispersion of fillers in the matrix, the physical and chemical interaction of polymer chains with the nanotubes, crosslinking chemistry of rubbers and the orientation of the tubes within the matrix, here, a thorough study of these topics is carried out. For this, various techniques of composite manufacturing such as pulverization, heterocoagulation, freeze drying, etc. are discussed by emphasizing the dispersion and alignment of CNTs in elastomers. The importance of the functionalization technique as well as the confinement effect of nanotubes in elastomer media is derived. In a word, this article is aimed exclusively at addressing the prevailing problems related to the CNT dispersion in various rubber matrices, the solutions to produce advanced high-performance elastomeric composites and various fields of applications of such composites, especially electronics. Special attention has also been given to the non-linear viscoelasticity effects of elastomers such as the Payne effect, Mullin's effect and hysteresis in regulating the composite properties. Moreover, the current challenges and opportunities for efficiently translating the extraordinary electrical properties of CNTs to rubbery matrices are also dealt with.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microencapsulation of tuna oil in gelatin-sodium hexametaphosphate (SHMP) using complex coacervation was optimised for the stabilisation of omega-3 oils, for use as a functional food ingredient. Firstly, oil stability was optimised by comparing the accelerated stability of tuna oil in the presence of various commercial antioxidants, using a Rancimat™. Then zeta-potential (mV), turbidity and coacervate yield (%) were measured and optimised for complex coacervation. The highest yield of complex coacervate was obtained at pH 4.7 and at a gelatin to SHMP ratio of 15:1. Multi-core microcapsules were formed when the mixed microencapsulation system was cooled to 5 °C at a rate of 12 °C/h. Crosslinking with transglutaminase followed by freeze drying resulted in a dried powder with an encapsulation efficiency of 99.82% and a payload of 52.56%. Some 98.56% of the oil was successfully microencapsulated and accelerated stability using a Rancimat™ showed stability more than double that of non-encapsulated oil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Omega-3 fatty acids and probiotic bacteria were co-encapsulated in a single whey protein isolate (WPI)-gum Arabic (GA) complex coacervate microcapsule. Tuna oil (O) and Lactobacillus casei 431 (P) were used as models of omega-3 and probiotic bacteria, respectively. The co-microcapsules (WPI-P-O-GA) and L.casei containing microcapsules (WPI-P-GA) were converted into powder by using spray and freeze drying. The viability of L.casei was significantly higher in WPI-P-O-GA co-microcapsules than in WPI-P-GA. The oxidative stability of tuna oil was significantly higher in spray dried co-capsules than in freeze dried ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil, one of the largest agricultural producers in the world, has managed in recent years to significantly improve its production. However, in response to this advance in the agro-industrial sector, the generation of agro-industrial residues has also increased. New technological alternatives have to be implemented in order to bring economic and rational use of this material and drying is one of the possible choices. Considering the great importance that bioactive compounds present for food science and technology, this research aims to evaluate the air-drying process of acerola residue in a tray convective drier under controlled temperature (60, 70 e 80ºC), air velocity (4.0, 5.0 e 6.0 m/s) and material width (0.5, 0.62 e 0.75 cm) by applying an experimental planning 23 + 3. Based on that, the impact on physical-chemical characteristics, color, bioactive compounds concentration and antioxidant activity of dried acerola waste was evaluated, having the in natura and freeze dried waste as control groups. Dried acerola residue presented natural pigments, mainly carotenoids (143.68 - 68.29 mg/g) and anthocyanins (290.92 - 90.11 mg/100 g), which explain the red and yellow instrumental color parameters observed. The acerola residue powder is also rich in phenolic compounds (3261.11 -2692.60 mgGAEeq/100g), proanthocyanidins (61.33-58.46 eq/100g), ascorbic acid (389.44 739.29 mg/100 g) and DPPH antioxidant activity (20.91 24.72 μg Trolox eq/g). Results show decreased concentration of phenolic compounds, anthocyanins, carotenoids, proanthocyanidins and ascorbic acid caused by the air-drying process. However, even after the observed drying losses, the acerola residue powder can be considered a high value food ingredient, considering the high bioactive compounds concentration found in the final product, as well as the colorimetric characterization and microbiological stability of the dried powder

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a cinética de secagem e os parâmetros de qualidade - conteúdo de vitamina C, reidratação e textura - de fatias de abacaxi liofilizadas em função da espessura e da temperatura de congelamento. Abacaxis do tipo Havaí, variedade Smooth Cayenne, foram fatiados transversalmente em espessuras de 0,5, 1,0 e 1,5 cm. As fatias foram congeladas nas temperaturas de -14, -24 e -34 °C, sendo, em seguida, conduzidas ao liofilizador. Uma parcela das amostras era destinada ao estudo da cinética de secagem pela pesagem periódica das mesmas, enquanto outra foi reservada para os testes de qualidade. O teor de vitamina C foi quantificado por adição de ácido oxálico na amostra e titulado com 2,6-diclorofenolindofenol. O parâmetro de textura avaliado foi a dureza, por testes de compressão em texturômetro, enquanto a reidratação foi obtida pela pesagem das amostras antes e após a imersão em água destilada por 5 min. Os resultados do presente trabalho mostraram que existe uma forte dependência da cinética de secagem e dos atributos de qualidade de fatias de abacaxi liofilizadas em função das condições utilizadas durante a etapa de congelamento, mesmo sendo este classificado como congelamento lento. Por outro lado, a taxa de congelamento não é a única variável que tem influência sobre a cinética de secagem e os atributos de qualidade. A combinação de temperatura e umidade, tanto durante a liofilização propriamente dita, quanto durante a etapa de reidratação, tem influência sobre a transição vítrea do material que, por sua vez, afeta a extensão do colapso estrutural sofrido pelo produto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol-gel transition observed in this system. The study of suspensions prepared with different molar ratios R-S = [Zr]/[SO42-] and R-Cl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of R-S and R-Cl on the structural features of nanoparticles and on the particle solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemical analysis revealed that irrespective of the nominal value of R-S and R-Cl all studied samples of the thermoreversible domain are constituted by a well-defined compound possessing an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded on the surface by complexing sulfate ligands. zeta potentials of powders extracted by freeze-drying from the thermoreversible gel revealed a point of surface charge inversion attributed to the specific adsorption of SO42- ion. Thermoreversible gel formation is rationalized by considering the effect of the specific adsorption on the electrical double-layer repulsion together with the temperature dependency of the physical chemical properties of ions in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)