978 resultados para Fluorescence-polarization
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
Abstract. We have used chlortetracycline (CTC) as a fluorescent probe to detect the distribution of sequestered calcium in multicellular stages of Dictyostelium discoideum. Tips of late aggregates, slugs and early culminating masses fluoresce very strongly. Most of the fluorescence is intracellular in origin and emanates from a small number of intense punctate sources. The sources correspond in part to autophagic vacuoles viz. neutral-red staining, acidic digestive vesicles, and may also include intracellular organelles; cytoplasmic fluorescence is much weaker in comparison. The level of fluorescence drops in the middle portion of slugs and rises again in the posteriormost region, though not to as high a level as in the tip. This holds good irrespective of whether CTC is applied only in the neighbourhood of the aggregate centre, only in the aggregate periphery, or to the whole aggregate. We infer that there must be a good deal of mixing in the stages leading from aggregation to slug formation; thus the serial order in which cells enter an aggregate does not bear any relation to their ultimate fates. The other implication of our study is that calcium sequestration is much more extensive in prestalk and anterior-like cells than in prespore cells. These findings are discussed with regard to possible implications for pattern formation.
Resumo:
To obtain data on phytoplankton dynamics with improved spatial and temporal resolution, and at reduced cost, traditional phytoplankton monitoring methods have been supplemented with optical approaches. In this thesis, I have explored various fluorescence-based techniques for detection of phytoplankton abundance, taxonomy and physiology in the Baltic Sea. In algal cultures used in this thesis, the availability of nitrogen and light conditions caused changes in pigmentation, and consequently in light absorption and fluorescence properties of cells. In the Baltic Sea, physical environmental factors (e.g. mixing depth, irradiance and temperature) and related seasonal succession in the phytoplankton community explained a large part of the seasonal variability in the magnitude and shape of Chlorophyll a (Chla)-specific absorption. The variability in Chla-specific fluorescence was related to the abundance of cyanobacteria, the size structure of the phytoplankton community, and absorption characteristics of phytoplankton. Cyanobacteria show very low Chla-specific fluorescence. In the presence of eukaryotic species, Chla fluorescence describes poorly cyanobacteria. During cyanobacterial bloom in the Baltic Sea, phycocyanin fluorescence explained large part of the variability in Chla concentrations. Thus, both Chla and phycocyanin fluorescence were required to predict Chla concentration. Phycobilins are major light harvesting pigments for cyanobacteria. In the open Baltic Sea, small picoplanktonic cyanobacteria were the main source of phycoerythrin fluorescence and absorption signal. Large filamentous cyanobacteria, forming harmful blooms, were the main source of the phycocyanin fluorescence signal and typically their biomass and phycocyanin fluorescence were linearly related. Using phycocyanin fluorescence, dynamics of cyanobacterial blooms can be detected at high spatial and seasonal resolution not possible with other methods. Various taxonomic phytoplankton pigment groups can be separated by spectral fluorescence. I compared multivariate calibration methods for the retrieval of phytoplankton biomass in different taxonomic groups. Partial least squares regression method gave the closest predictions for all taxonomic groups, and the accuracy was adequate for phytoplankton bloom detection. Variable fluorescence has been proposed as a tool to study the physiological state of phytoplankton. My results from the Baltic Sea emphasize that variable fluorescence alone cannot be used to detect nutrient limitation of phytoplankton. However, when combined with experiments with active nutrient manipulation, and other nutrient limitation indices, variable fluorescence provided valuable information on the physiological responses of the phytoplankton community. This thesis found a severe limitation of a commercial fast repetition rate fluorometer, which couldn t detect the variable fluorescence of phycoerythrin-lacking cyanobacteria. For these species, the Photosystem II absorption of blue light is very low, and fluorometer excitation light did not saturate Photosystem II during a measurement. This thesis encourages the use of various in vivo fluorescence methods for the detection of bulk phytoplankton biomass, biomass of cyanobacteria, chemotaxonomy of phytoplankton community, and phytoplankton physiology. Fluorescence methods can support traditional phytoplankton monitoring by providing continuous measurements of phytoplankton, and thereby strengthen the understanding of the links between biological, chemical and physical processes in aquatic ecosystems.
Resumo:
Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.
Resumo:
The polarization position-angle swings that have been measured in a number of BL Lacertae objects and highly variable quasars are interpreted in terms of shock waves which illuminate (by enhanced synchrotron radiation) successive transverse cross sections of a magnetized, relativistic jet. The jet is assumed to have a nonaxisymmetric magnetic field configuration of the type discussed in the companion paper on the equilibria of force-free jets. For a jet that is viewed at a small angle to the axis, the passage of a shock will give rise to an apparent rotation of the polarization position angle whose amplitude can be substantially larger than 180 deg. The effects of freely propagating shocks are compared with those of bow shocks which form in front of dense obstacles in the jet, and specific applications to 0727 - 115 and BL Lacertae are considered. In the case of 0727 - 115, it is pointed out that the nonuniformity of the swing rate and the apparent oscillations of the degree of polarization could be a consequence of relativistic aberration.
Resumo:
The Mueller-Stokes formalism that governs conventional polarization optics is formulated for plane waves, and thus the only qualification one could require of a 4 x 4 real matrix M in order that it qualify to be the Mueller matrix of some physical system would be that M map Omega((pol)), the positive solid light cone of Stokes vectors, into itself. In view of growing current interest in the characterization of partially coherent partially polarized electromagnetic beams, there is a need to extend this formalism to such beams wherein the polarization and spatial dependence are generically inseparably intertwined. This inseparability brings in additional constraints that a pre-Mueller matrix M mapping Omega((pol)) into itself needs to meet in order to be an acceptable physical Mueller matrix. These additional constraints are motivated and fully characterized. (C) 2010 Optical Society of America
Resumo:
The issue raised in this Letter is classical, not only in the sense of being nonquantum, but also in the sense of being quite ancient: which subset of 4 X 4 real matrices should be accepted as physical Mueller matrices in polarization optics? Nonquantum entanglement or inseparability between the polarization and spatial degrees of freedom of an electromagnetic beam whose polarization is not homogeneous is shown to provide the physical basis to resolve this issue in a definitive manner.
Resumo:
Poly(2-methoxy-5-[2'-ethylhexyoxy]-1,4-phenylenevinylene) (MEHPPV) derivatives with polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhibited a dramatic increase in their fluorescence intensity in the presence of a variety of surfactants, even at concentrations far below their critical micelle concentrations (CMC). This increase was accompanied by a blue-shift in the emission maximum. These observations are rationalized based on the postulate that the backbone conformation of the conjugated polymer is modulated upon interaction of the surfactant molecules with the polyelectrolytic tethers, which in turn results in a significant depletion of intra-chain interchromophore interactions that are known to cause red-shifted emission bands with significantly lower emission yields.
Resumo:
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.
Resumo:
DNA amplification using Polymerase Chain Reaction (PCR) in a small volume is used in Lab-on-a-chip systems involving DNA manipulation. For few microliters of volume of liquid, it becomes difficult to measure and monitor the thermal profile accurately and reproducibly, which is an essential requirement for successful amplification. Conventional temperature sensors are either not biocompatible or too large and hence positioned away from the liquid leading to calibration errors. In this work we present a fluorescence based detection technique that is completely biocompatible and measures directly the liquid temperature. PCR is demonstrated in a 3 ILL silicon-glass microfabricated device using non-contact induction heating whose temperature is controlled using fluorescence feedback from SYBR green I dye molecules intercalated within sensor DNA. The performance is compared with temperature feedback using a thermocouple sensor. Melting curve followed by gel electrophoresis is used to confirm product specificity after the PCR cycles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The pH dependent reversible association-dissociation reaction of α- and β-lipovitellins from egg yolk has been studied by 1H NMR and fluorescence probe methods. Increased mobility of the choline methyl groups has been demonstrated on dissociation. The lipid methylene resonance of β-lipovitellin shows clear doublet character suggesting that the fatty acid chains exist in distinct environments. The high field component increases with temperature but is suppressed on treatment with pronase, suggesting a significant role for proteins in maintaining the differences in lipid environments. 1-Anilino-8-naphthalene sulfonate has been shown to bind less effectively to the monomeric lipovitellins. This is in agreement with earlier results suggesting that dissociation may be accompanied by increased hydration and conformational changes.
Resumo:
Epitaxial bilayered thin films composed of ferromagnetic La0.6Sr0.4MnO3 and ferroelectric 0.7Pb (Mg1/3Nb2/3)O3-0.3(PbTiO3) were fabricated on LaAlO3 (100) substrates by pulsed laser ablation. Ferroelectric, ferromagnetic and magneto-dielectric characterizations performed earlier indicated the possible existence of strain-mediated magneto-electric coupling in these biferroic heterostructures. In order to investigate their true remnant polarization characteristics, usable in devices, room-temperature polarization versus electric field, positive-up negative-down (PUND) pulse polarization studies and remnant hysteresis measurements were carried out. The PUND and remnant hysteresis measurements revealed the significant contribution of the non-remnant component in the observed polarization hysteresis response of these heterostructures. (C) 2010 Published by Elsevier Ltd
Resumo:
The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.