955 resultados para Flexible process graph


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a case study involving information technology managers and their new programmer recruitment policy, but the primary interest is methodological. The processes of issue generation and selection and model conceptualization are described. Early use of “magnetic hexagons” allowed the generation of a range of issues, most of which would not have emerged if system dynamics elicitation techniques had been employed. With the selection of a specific issue, flow diagraming was used to conceptualize a model, computer implementation and scenario generation following naturally. Observations are made on the processes of system dynamics modeling, particularly on the need to employ general techniques of knowledge elicitation in the early stages of interventions. It is proposed that flexible approaches should be used to generate, select, and study the issues, since these reduce any biasing of the elicitation toward system dynamics problems and also allow the participants to take up the most appropriate problem- structuring approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthogonality, alignment and adaptivity; however, they cannot make subjective design decisions. There are a few quad meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here, we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a flexible mechanism to allow external input, through the definition of alignment features that are respected during the mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface features. Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation focuses on dynamic aspects of coordination processes such as reversibility of early actions, option to delay decisions, and learning of the environment from the observation of other people’s actions. This study proposes the use of tractable dynamic global games where players privately and passively learn about their actions’ true payoffs and are able to adjust early investment decisions to the arrival of new information to investigate the consequences of the presence of liquidity shocks to the performance of a Tobin tax as a policy intended to foster coordination success (chapter 1), and the adequacy of the use of a Tobin tax in order to reduce an economy’s vulnerability to sudden stops (chapter 2). Then, it analyzes players’ incentive to acquire costly information in a sequential decision setting (chapter 3). In chapter 1, a continuum of foreign agents decide whether to enter or not in an investment project. A fraction λ of them are hit by liquidity restrictions in a second period and are forced to withdraw early investment or precluded from investing in the interim period, depending on the actions they chose in the first period. Players not affected by the liquidity shock are able to revise early decisions. Coordination success is increasing in the aggregate investment and decreasing in the aggregate volume of capital exit. Without liquidity shocks, aggregate investment is (in a pivotal contingency) invariant to frictions like a tax on short term capitals. In this case, a Tobin tax always increases success incidence. In the presence of liquidity shocks, this invariance result no longer holds in equilibrium. A Tobin tax becomes harmful to aggregate investment, which may reduces success incidence if the economy does not benefit enough from avoiding capital reversals. It is shown that the Tobin tax that maximizes the ex-ante probability of successfully coordinated investment is decreasing in the liquidity shock. Chapter 2 studies the effects of a Tobin tax in the same setting of the global game model proposed in chapter 1, with the exception that the liquidity shock is considered stochastic, i.e, there is also aggregate uncertainty about the extension of the liquidity restrictions. It identifies conditions under which, in the unique equilibrium of the model with low probability of liquidity shocks but large dry-ups, a Tobin tax is welfare improving, helping agents to coordinate on the good outcome. The model provides a rationale for a Tobin tax on economies that are prone to sudden stops. The optimal Tobin tax tends to be larger when capital reversals are more harmful and when the fraction of agents hit by liquidity shocks is smaller. Chapter 3 focuses on information acquisition in a sequential decision game with payoff complementar- ity and information externality. When information is cheap relatively to players’ incentive to coordinate actions, only the first player chooses to process information; the second player learns about the true payoff distribution from the observation of the first player’s decision and follows her action. Miscoordination requires that both players privately precess information, which tends to happen when it is expensive and the prior knowledge about the distribution of the payoffs has a large variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the minimization of tool switches problem we seek a sequence to process a set of jobs so that the number of tool switches required is minimized. In this work different variations of a heuristic based on partial ordered job sequences are implemented and evaluated. All variations adopt a depth first strategy of the enumeration tree. The computational test results indicate that good results can be obtained by a variation which keeps the best three branches at each node of the enumeration tree, and randomly choose, among all active nodes, the next node to branch when backtracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

States that control is of the essence in cybernetics. Summarizes the dynamic equations for a flexible one-link manipulator moving in the horizontal plane. Employs the finite element method, based on elementary beam theory, during the process of formulation. Develops and instruments a one-link flexible manipulator in order to control its vibration modes. Uses a simple second-order vibration model which permits vibrations on the rod to be estimated using the hub angle. The validation of the dynamic model and the structural analysis of the flexible manipulator is reached using proper infrared cameras and active light sources for determining actual positions of objects in space. Shows that the performance of the control is satisfactory, even under perturbation action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rule creation to clone selection in different projects is a hard task to perform by using traditional implementations to control all the processes of the system. The use of an algebraic language is an alternative approach to manage all of system flow in a flexible way. In order to increase the power of versatility and consistency in defining the rules for optimal clone selection, this paper presents the software OCI 2 in which uses process algebra in the flow behavior of the system. OCI 2, controlled by an algebraic approach was applied in the rules elaboration for clone selection containing unique genes in the partial genome of the bacterium Bradyrhizobium elkanii Semia 587 and in the whole genome of the bacterium Xanthomonas axonopodis pv. citri. Copyright© (2009) by the International Society for Research in Science and Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creating high-quality quad meshes from triangulated surfaces is a highly nontrivial task that necessitates consideration of various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a flexible, interactive approach to quadrangulation design. By combining scalar field topology and combinatorial connectivity techniques, we present a new framework, following a coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria on the output quad mesh, at interactive rates. Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small amount of interactions a coarse quadrangulation of the model, capturing the main features of the shape, with user prescribed extraordinary vertices and alignment. Fine grain tuning is easily achieved with the notion of connectivity texturing, which allows for additional extraordinary vertices specification and explicit feature alignment, to capture the high-frequency geometries. Experiments demonstrate the interactivity and flexibility of our approach, as well as its ability to generate quad meshes of arbitrary resolution with high-quality statistics, while meeting the user's own subjective requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose three novel mathematical models for the two-stage lot-sizing and scheduling problems present in many process industries. The problem shares a continuous or quasi-continuous production feature upstream and a discrete manufacturing feature downstream, which must be synchronized. Different time-based scale representations are discussed. The first formulation encompasses a discrete-time representation. The second one is a hybrid continuous-discrete model. The last formulation is based on a continuous-time model representation. Computational tests with state-of-the-art MIP solver show that the discrete-time representation provides better feasible solutions in short running time. On the other hand, the hybrid model achieves better solutions for longer computational times and was able to prove optimality more often. The continuous-type model is the most flexible of the three for incorporating additional operational requirements, at a cost of having the worst computational performance. Journal of the Operational Research Society (2012) 63, 1613-1630. doi:10.1057/jors.2011.159 published online 7 March 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.