891 resultados para Fazenda Salobo (MG)
Resumo:
Mg and its alloys become natural biomaterials as the elemental Mg is found in the human body in abundance and their mechanical properties being akin to the natural bone as well as due to their inherent bioabsorbable/bioresorbable property. This paper discusses the development of new Mg alloys and their corrosion characteristics in detail. The latest advancements in coating of Mg alloys to control their degradation rate are also reviewed along with the future challenges that need to be addressed.
Resumo:
In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.
Resumo:
Cast Mg/SiCp and AZ91/SiCp composites were successfully hot extruded vis-a-vis cast and unreinforced Mg and AZ91 alloy up to low (R=15:1) and high (R=54:1) extrusion ratios at 350 degrees C. Significant matrix grain refinement was noticed after extrusion due to dynamic recrystallization; the degree of refinement being relatively higher for the two composites. The AZ91 based materials (AZ91 and AZ91/SiCp) exhibited comparatively finer grain size both in cast condition and after extrusion due to strong pinning effect from alloying elements as well as Mg17Al12 intermetallic phase. Compositional analyses eliminated the possibility of any interfacial reaction between matrix (Mg/AZ91) and second phase reinforcement (SiCp) in case of the composites. Texture evolution shows the formation of < 10 (1) over bar0 >parallel to ED texture fibre for all the materials after extrusion irrespective of SiCp addition or alloying which is primarily due to the deformation of the matrix phase. Micro-hardness did not significantly increased on extrusion in comparison to the respective cast materials for both composites and unreinforced alloys. Dynamic mechanical analysis, however, confirmed that the damping properties were affected by the extrusion ratio and to a lesser extent, due to the presence of second phase at room temperature as well as at higher temperature (300 degrees C). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The relationship between the as-cast microstructure and creep behaviour of the heat-resistant MRI230D Mg alloy produced by two different casting technologies is investigated. The alloy in both ingot-casting (IC) and high pressure die-casting (HPDC) conditions consists of alpha-Mg, 06 ((Mg,AI)(2)Ca), Al-Mn and Sn-Mg-Ca rich phases. However, the HPDC alloy resulted in relatively finer grain size and higher volume fraction of finer, denser network of eutectic C36 phase in the as-cast microstructure as compared to that of the IC alloy. The superior creep resistance exhibited by the HPDC alloy at all the stress levels and temperatures employed in the present investigation was attributed to the more effective dispersion strengthening effect caused by the presence of finer and denser network of the C36 phase. The increased amount of the eutectic C36 phase was the only change observed in the microstructures of both alloys following creep tests. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of grain refinement in a AZ31 Mg alloy subjected to hot groove rolling is investigated up to large strain (epsilon(t) similar to 2.5). The alloy shows enhanced yield strength without compromising ductility. The change in strain path during rolling has resulted in significant weakening of basal texture. The microstructure analyses show that dynamic recrystallization (DRX) contributed significantly to grain refinement and hence to the observed mechanical properties. The combined effects of DRX and texture evolution on mechanical properties have been addressed.
Resumo:
This is the first successful attempt to produce Mg-Ce alloys of different texture through different processing routes while keeping the grain size and grain size distribution same. Tensile data shows that contribution of texture to ductility enhancement is primary and that of grain refinement is secondary. The texture resulting from multi-axial forging of extruded billets followed by annealing exhibits the highest ductility (similar to 40%) at room temperature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The present study elucidates the effects of nanoscale boron nitride particles addition on the microstructural and mechanical characteristics of monolithic magnesium. Novel light-weight Mg nanocomposites containing 0.3, 0.6 and 1.2vol% nano-size boron nitride particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. Microstructural characterization of developed Mg/x-boron nitride composites revealed significant grain refinement due to the uniform distribution of nano-boron nitride particulates. Texture analysis of selected Mg-1.2 boron nitride nanocomposite showed an increase in the intensity of fiber texture alongside enhanced localized recrystallization when compared to monolithic Mg. Mechanical properties evaluation under indentation, tension and compression loading indicated superior response of Mg/x-boron nitride composites in comparison to pure Mg. The uniform distribution of nanoscale boron nitride particles and the modified crystallographic texture achieved due to the nano-boron nitride addition attributes to the superior mechanical characteristics of Mg/boron nitride nanocomposites.
Resumo:
Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Mg65 Cu25 Gdlo bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA . The mechanism of the GFA decrease was also discussed.
Resumo:
Investigations on the aging hardening behavior of four Al-Li-Zn-Mg-Cu alloys were carried out using differential scanning calorimetry, transmission electron microscopy and hardness measurement. It is shown that the addition of Li inhibits the formation of Zn-rich G.P. zones in Al-Zn-Mg-Cu alloys. The dominant aging hardening precipitates is delta'(Al3Li) phase. Coarse T ((AlZn)(49)Mg-32) phase, instead of MgZn2, precipitates primarily on grain boundaries, and provides little strengthening. The multi-stop aging involving plastic deformation introduces in the matrix a high concentration of structural defects. These defects play different role on the nucleation of Zn-rich G.P. zones in different alloys. For the Li free alloy, structural defects act as vacancy sinks and tend to suppress the homogeneous precipitation of G.P. zones, while for the Li containing alloys, these defects promote the heterogeneous nucleation of G.P. zones and metastable MgZn2. A significant aging hardening effect is attained in deformed Li containing alloys due to the extra precipitation of fine MgZn2 in the matrix combined with deformation hardening.
Resumo:
采用电泳法和电势滴定法测定出不同电解质(LiCl,NaCl和KCl)溶液中Mg-Al-NO_3层状双金属氢氧化物(Mg-Al-NO_3LDH)颗粒的$\Xi$电位、等电点、永久电荷密度以及零电荷点等电化学物理量,探讨了电解质、pH和样品化学组成对Mg-Al-NO_3LDH电性质的影响。研究发现一价阳离子Li+,Na+,K+对Mg-Al-NO_3LDH颗粒的等电点有影响,使等电点依次降低;由于永久电荷的存在,等电点与零电荷点不一致。随着样品中Al含量的增加,永久电荷密度依次增加,零电荷点依次增大,而等电点依次降低。
Resumo:
A Assembleia Nacional Constituinte (ANC) realiza debate sobre a política econômica atual, preocupada em fazer uma Constituição voltada para a realidade . O primeiro encontro ocorreu com Walter Barelli, Diretor do Departamento Intersindical de Estudos Estatísticos Sócio-Econômicos - DIEESE, que apresentou estudos realizados sobre o Plano Bresser. Plínio Arruda Sampaio (PT-SP) afirma que, devido a subserviência da política econômica ao capital estrangeiro, o desemprego aumentou. Bresser Pereira, Ministro da Fazenda, fez um balanço da situação econômica do país e debateu o assunto durante seis horas, apresentando dados a respeito do seu plano. Dalton Canabrava (PMDB-MG) acha que o Plano Bresser é bem fundamentado. Cristina Tavares (PMDB-PE) defende o parlamentarismo para evitar a permanência no poder de ministros com tais teses. Carlos Sant'Anna (PMDB-BA) opina que a situação econômica é dramática. Luiz Inácio Lula da Silva (PT-SP) diz que existe uma distância entre o Executivo e o Legislativo. Delfim Netto (PDS-SP) gostou da exposição e diz que devemos saudar a volta da racionalidade na política econômica. César Maia (PDT-RJ) acredita que as medidas irão alongar e aprofundar a recessão. Gastoni Righi (PTB-SP) defende o debate para encontrar as melhores soluções dentro da futura Carta. Bresser Pereira diz que o plano de congelamento está dando certo.
Resumo:
Inclui tabelas com as tarifas das alfandegas.