1000 resultados para Ethanolic solution
Resumo:
Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.
Resumo:
PURPOSE. To examine the deposition of tear phospholipids and cholesterol onto worn contact lenses and the effect of lens material and lens care solution. METHODS. Lipids were extracted from tears and worn contact lenses using 2:1 chloroform: Methanol and the extract washed with aqueous ammonium acetate, before analysis by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS. Twenty-three molecular lipids from the sphingomyelin (SM) and phosphatidylcholine (PC) classes were detected in tears, with total concentrations of each class determined to be 5 ± 1 pmol/μL (~3.8 μg/mL) and 6 ± 1 pmol/μL (~ 4.6μg/mL), respectively. The profile of individual phospholipids in both of these classes was shown to be similar in contact lens deposits. Deposition of representative polar and nonpolar lipids were shown to be significantly higher on senofilcon A contact lenses, with ~59 ng/lens SM, 195 ng/lens PC, and 9.9 μg/lens cholesterol detected, whereas balafilcon A lens extracts contained ~19 ng/lens SM, 19 ng/lens PC, and 3.9 μg/lens cholesterol. Extracts from lenses disinfected and cleaned with two lens care solutions showed no significant differences in total PC and SM concentrations; however, a greater proportion of PC than SM was observed, compared with that in tears. CONCLUSIONS. Phospholipid deposits extracted from worn contact lenses show a molecular profile similar to that in tears. The concentration of representative polar and nonpolar lipids deposited onto contact lenses is significantly affected by lens composition. There is a differential efficacy in the removal of PC and SM with lens care solutions.
Resumo:
Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Resumo:
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.
Resumo:
The series expansion of the plasma fields and currents in vector spherical harmonics has been demonstrated to be an efficient technique for solution of nonlinear problems in spherically bounded plasmas. Using this technique, it is possible to describe the nonlinear plasma response to the rotating high-frequency magnetic field applied to the magnetically confined plasma sphere. The effect of the external magnetic field on the current drive and field configuration is studied. The results obtained are important for continuous current drive experiments in compact toruses. © 2000 American Institute of Physics.
Resumo:
In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.
Resumo:
With ever-increasing share of power electronic loads constant power instability is becoming a significant issue in microgrids, especially when they operate in the islanding mode. Transient conditions like resistive load-shedding or sudden increase of constant power loads (CPL) might destabilize the whole system. Modeling and stability analysis of AC microgrids with CPLs have already been discussed in literature. However, no effective solutions are provided to stabilize this kind of system. Therefore, this paper proposes a virtual resistance based active damping method to eliminate constant power instability in AC microgrids. Advantages and limitations of the proposed method are also discussed in detail. Simulation results are presented to validate the proposed active damping solution.
Resumo:
This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
Commercial products using organic light emitting diode (OLED) display technology have begun to appear in cell phones, mp3 players and even televisions. One key area that has allowed and will allow for this technology to continue its ascension into the flat panel display and lighting markets is materials R and D. From this perspective, recent progress in cubic silsesquioxane (SSQ) based materials may provide some new advantageous properties well suited for OLEDs. In this feature article we provide an overview of recent progress in the synthesis, characterization and implementation of SSQ-based materials with properties well suited for application in solution processable organic/polymer electronics, specifically OLEDs.
Resumo:
We describe the advantages of dual-gate thin-film transistors (TFTs) for display applications. We show that in TFTs with active semiconductor layers composed of diketopyrrolopyrrole-naphthalene copolymer, the on-current is increased, the off-current is reduced, and the sub-threshold swing is improved compared to single-gate devices. Charge transport measurements in steady-state and under non-quasi-static conditions reveal the reasons for this improved performance. We show that in dual-gate devices, a much smaller fraction of charge carriers move in slow trap states. We also compare the activation energies for charge transport in the top-gate and bottom-gate configurations.
Resumo:
A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm2/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm2/(V·s) for polymer thin films even without thermal annealing.
Resumo:
Solution processable diketopyrrolopyrrole (DPP)-bithiophene polymers (PDBT) with long branched alkyl side chains on the DPP unit are synthesized. These polymers have favourable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for the injection and transport of both holes and electrons. Organic thin film transistors (OTFTs) using these polymers as semiconductors and gold as source/drain electrodes show typical ambipolar characteristics with very well balanced high hole and electron mobilities (μ h = 0.024 cm 2 V -1 s -1 and μ e = 0.056 cm 2 V -1 s -1). These simple and high-performing polymers are promising materials for ambipolar organic thin film transistors for low-cost CMOS-like logic circuits.
Resumo:
A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.
Resumo:
Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.